
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Domain-Oriented Reuse Interfaces for
Object-Oriented Frameworks

André Leal Santos

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE ENGENHARIA INFORMÁTICA

2008

http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:andre.santos@di.fc.ul.pt

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Domain-Oriented Reuse Interfaces for
Object-Oriented Frameworks

André Leal Santos

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE ENGENHARIA INFORMÁTICA

2008

Tese orientada pelo Prof. Doutor Kai Evert Ross Koskimies
e co-orientada pela Prof.a Doutora Maria Antónia Bacelar da Costa Lopes

http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:andre.santos@di.fc.ul.pt

Abstract

Object-oriented frameworks play an important role in current software
engineering practice. Frameworks enable the development of several
applications in a particular domain with high levels of reuse. However,
although frameworks are a powerful means for software reuse, their
reuse interface is typically difficult to learn, a problem which hinders
their full potential. Different strategies can be used to overcome this
problem, namely by developing documentation, instantiation tools, or
a domain-specific language (DSL). Although DSLs provide the most
effective support for using a framework, developing and maintaining
them are challenging and laborious tasks.

This work proposes a technique based on aspect-oriented program-
ming for enhancing framework reuse interfaces, so that framework-
based applications can be developed at a higher abstraction level.
A pattern language for aiding the design of such reuse interfaces is
also presented. Although the adoption of higher level reuse interfaces
facilitates framework usage, this work goes one step further and pro-
poses a technique that, capitalizing on such reuse interfaces, enables
automation gains on the development of DSLs for instantiating frame-
works. By exploiting the close relation between application concepts
and code based on the proposed reuse interfaces, ready-to-use DSLs
can be automatically extracted using a generic language workbench.
A prototype of such language workbench for building domain-specific
modeling languages has been implemented, and the proposed tech-
niques have been evaluated using two real frameworks.

Keywords: Object-Oriented Frameworks, Aspect-Oriented Program-
ming, Domain-Specific (Modeling) Languages, LanguageWorkbenches.

Resumo

As frameworks orientadas a objectos assumem um papel importante
na prática de Engenharia de Software, pois permitem desenvolver di-
ferentes aplicações num determinado domínio, com elevados níveis
de reutilização. Contudo, embora as frameworks sejam um meio po-
deroso para reutilização de software, tipicamente a sua interface de
reutilização é difícil de dominar — um problema que limita o seu po-
tencial. Diferentes estratégias podem ser adoptadas de forma a ultra-
passar este problema, nomeadamente a produção de documentação,
a utilização de ferramentas de instanciação, e a definição de DSLs.
Embora a última opção seja especialmente poderosa, concretizar e
manter uma DSL tem tipicamente um custo elevado.

Este trabalho de Doutoramento propõe uma técnica baseada em pro-
gramação orientada a aspectos para definir as interfaces de reutiliza-
ção das frameworks de forma a facilitar a sua instanciação, permitindo
que as aplicações sejam desenvolvidas a um nível de abstracção mais
elevado. É também apresentada uma linguagem de padrões para auxi-
liar o desenvolvimento de tais interfaces de reutilização. Este trabalho
explora a automação do desenvolvimento de DSLs para instanciação
de frameworks, tirando partido da proximidade entre os conceitos de
uma aplicação baseada na framework e as interfaces de reutilização
propostas. É proposta uma abordagem na qual DSLs prontas a usar
são extraídas das interfaces de reutilização, por via de uma ferramenta
genérica. As abordagens foram avaliadas utilizando duas frameworks
reais, e foi concretizado um protótipo da ferramenta proposta.

Palavras Chave: Frameworks Orientadas a Objectos, Programacao
Orientada a Aspectos, Linguagens Especificas de Dominio

Resumo Alargado

Uma framework orientada a objectos consiste num conjunto de classes que im-
plementa uma solução abstracta para aplicações de determinado domínio. Desde
há vários anos que as frameworks assumem um papel importante na prática de
Engenharia de Software, particularmente na concretização de interfaces gráficas,
middleware, e linhas de produto de software. Utilizando uma framework, uma
aplicação é desenvolvida adaptando determinados aspectos da solução abstracta
a requisitos específicos. A adaptação consiste numa instanciação da framework
definida em termos dos elementos disponíveis na interface de reutilização. As in-
terfaces de reutilização são tidas como difíceis de aprender, e é reconhecido que os
programadores de aplicações podem levar meses a saber instanciar correctamente
uma framework não trivial. Uma framework é tipicamente composta por um nú-
mero elevado de classes, o que dificulta a identificação das partes que é necessário
adaptar. Os padrões de colaboração entre os objectos de uma aplicação baseada
na framework são também tipicamente difíceis de aprender, dado que requerem
uma compreensão parcial do design da framework.

A dificuldade em dominar a interface de reutilização de uma framework torna
necessário disponibilizar artefactos externos à framework que dão suporte ao de-
senvolvimento de aplicações. O tipo de suporte mais popular é baseado em docu-
mentação, tipicamente estruturada em forma de “livro de receitas”. Cada receita
explica como adaptar determinado aspecto de uma aplicação, normalmente com
o auxílio de um exemplo. Apesar da documentação auxiliar o programador de
aplicações, não o dispensa de lidar com a complexidade da interface de reutiliza-
ção.

Uma abordagem mais poderosa do que documentação “em papel” consiste em
desenvolver ferramentas de instanciação. Estas podem assumir diversas formas,
que vão desde documentação interligada que guia o programador no processo de
instanciação, a wizards que permitem a geração de partes do código das aplicações.
Este tipo de ferramentas pode esconder parte da complexidade da interface de

reutilização da framework, mas tipicamente não permite gerar todo o código fonte
de uma aplicação.

O suporte mais poderoso para utilização de uma framework é alcançado por
meio de uma linguagem específica de domínio (DSL, Domain Specific Language).
Utilizando uma DSL, as aplicações são descritas a alto nível com base em abstrac-
ções do domínio da framework. A descrição de uma aplicação utilizando a DSL
permite gerar o código fonte que instancia a framework através da sua interface
de reutilização. Desta forma, a complexidade da interface de reutilização é es-
condida do programador de aplicações, o qual nalguns casos pode apenas ser um
especialista de domínio sem conhecimentos de programação. A adopção de DSLs
é tida como uma estratégia que permite obter elevados ganhos na produtividade
e qualidade no desenvolvimento de aplicações.

Embora o poder de uma DSL para utilização de uma framework seja atrac-
tivo, diversas dificuldades podem estar associadas à sua concretização. Uma das
principais fontes de tais dificuldades é a complexidade da transformação das abs-
tracções descritas numa DSL em código fonte baseado na interface de reutilização.
A forma mais comum de concretizar tal transformação é por via de um gerador de
código. O principal obstáculo na obtenção de uma solução de DSL bem sucedida
está portanto em grande parte relacionado com a concretização e manutenção do
gerador de código. A manutenção assume uma relevância essencial, dado que as
frameworks tipicamente evolvem constantemente devido à evolução do domínio
das mesmas. O suporte para utilização de novas funcionalidades da framework
através da DSL, implica modificar a definição das abstracções da DSL e o gerador
de código.

O trabalho de doutoramento apresentado nesta tese aborda a dificuldade de
utilização de frameworks sobre duas perspectivas. Uma primeira abordagem per-
mite desenvolver interfaces de reutilização de frameworks que permitem a sua
instanciação a mais alto nível. Tal abordagem facilita a utilização de frameworks
dada a elevação do nível de abstracção. Por outro lado, uma segunda abordagem
baseada na primeira, permite definir uma DSL na própria interface de reutili-
zação. Desta forma, a DSL é concretizada somente na interface de reutilização,
dispensando a necessidade de desenvolver um gerador de código.

A primeira abordagem é baseada no conceito de aspectos de especialização
de frameworks. Utilizando programação orientada a aspectos, é desenvolvido um
aspecto de especialização para cada conceito da framework. Um aspecto de espe-
cialização é um módulo reutilizável que dá suporte à instanciação de um conceito
numa aplicação. Um aspecto de aplicação é um módulo que utiliza um aspecto
de especialização para instanciar um conceito numa aplicação. Um aplicação é
composta por diversos aspectos de aplicação, cada um dos quais encapsulando a
utilização de um conceito oferecido pela framework. Em comparação com a ins-
tanciação convencional, esta abordagem permite construir soluções modulares,
nas quais os programadores de aplicações não necessitam de dominar tantos de-
talhes da framework. É demonstrado que a linguagem AspectJ é adequada para
desenvolver aspectos de especialização para frameworks concretizadas em Java.

Dado que o desenvolvimento de aspectos de especialização não é trivial, foi
elaborada uma linguagem de padrões para auxiliar nesta tarefa. Tal linguagem
é composta por vários padrões de desenho interligados, descrevendo soluções re-
correntes no desenho de aspectos de especialização.

A segunda abordagem é baseada no conceito de interface de reutilização ori-
entada ao domínio (DORI, Domain-Oriented Reuse Interface). Tal interface de
reutilização é composta por aspectos de especialização, os quais exprimem abs-
tracções de uma DSL. Uma DSL é extraída da DORI utilizando um ferramenta
adicional, e está pronta a ser utilizada para desenvolver aplicações baseadas na
framework. A ferramenta é genérica, no sentido em que pode ser utilizada com
qualquer framework para a qual exista uma DORI desenvolvida na linguagem de
programação orientada a aspectos suportada. Ao desenvolver uma DORI para de-
terminada framework, uma DSL é obtida automaticamente, não sendo necessário
desenvolver quaisquer artefactos adicionais.

A técnica proposta foi concretizada num protótipo denominado ALFAMA
(Automatic DSLs for using Frameworks by combining Aspect-oriented and Meta-
modeling Approaches), o qual suporta a construção de DSLs de modelação onde as
aplicações são descritas através de um grafo. A ferramenta ALFAMA é baseada na
plataforma Eclipse, e as DSLs são definidas utilizando a tecnologia de modelação
EMF (Eclipse Modeling Framework).

As abordagens propostas foram elaboradas e validadas utilizando duas fra-
meworks como casos de estudo. As frameworks foram o JHotDraw, que permite
desenvolver aplicações para edição de gráficos estruturados, e o Eclipse RCP (Rich
Client Platform), que permite desenvolver aplicações independentes baseadas na
infra-estrutura gráfica e arquitectura do Eclipse.

A forma como as frameworks são concretizadas pode-se considerar consolidada
de alguns anos a esta data. No entanto, investigação focada no suporte de utili-
zação é actualmente activa, dado que a eficácia dos métodos e técnicas existentes
não é tida como satisfatória. O trabalho apresentado nesta tese lança uma nova
perspectiva sobre as interfaces de reutilização de frameworks. O novo tipo de
interfaces de reutilização proposto não só contribui para facilitar a utilização da
framework por via de programação, como permite a concretização de DSLs com
um menor custo. A existência de DSLs é benéfica para a prática de Engenharia
de Software, dado o potencial aumento de produtividade e qualidade que pode
ser alcançado. As abordagens propostas nesta tese contribuem no sentido de
melhorar as técnicas e infra-estrutura de suporte ao desenvolvimento de DSLs.

Acknowledgements / Agradecimentos

Kiitos paljon Kai, for the good and dedicated advising that you gave
me throughout the Ph.D. studies. From the moment I started to apply
for scholarship, until the thesis delivery, I feel that you always did the
best you could for helping me. Moreover, you were the one who made
possible for me to be a visiting researcher at Tampere University of
Technology during two years. Without such a possibility, I guess I
would have not followed the Ph.D. studies.

Thanks to the members of the research group Practise (Tampere Uni-
versity of Technology) for their collaboration, with a special shukran
to Imed Hammouda for his encouragement and support.

Muito obrigado Antónia, não só pela orientação do Doutoramento,
mas também pelo incentivo desde cedo para desenvolver as minhas
capacidades de investigação, tendo todavia, sempre em conta que há
vida para além dos papers. Sempre que andei meio perdido nos dilemas
da vida académica, a ajuda foi preciosa.

Obrigado aos colegas, amigos, e professores do DI/FCUL que me apoi-
aram ou ajudaram de alguma forma durante o Doutoramento. Um
agradecimento especial para Daniel Gomes, Bruno Martins, Mário
Silva, Vasco Vasconcelos, Marcirio Chaves, João Antunes, Mônica Di-
xit, e Giuliana Santos. Muito obrigado ao Ademar Aguiar da FEUP,
pelo apoio, confiança, e ajuda nas actividades do meu Doutoramento.

Obrigado à Fundação para a Ciência e Tecnologia, e consequentemente
ao Estado Português, pelo financiamento desta actividade de investi-
gação através de Bolsa Doutoramento (com identificação SFRH/ BD/
16801/ 2004). Vou fazer o meu melhor para que o investimento tenha
o seu retorno.

Thanks to Prof. Oscar Nierstrasz, the main opponent of this thesis’
defense, for his valuable suggestions of improvement, which were taken
into account in the post-defense version of this thesis.

Obrigado meus amigos e amigas por não me fazerem esquecer que
a vida não é só bytes. Obrigado Tito e Mata, por entre muitas
outras coisas, acreditarem em mim desde dos primeiros anos do curso.
Gracies Josep, obrigado Albino, e xièxie Pan, pelo apoio, galhofas,
e tudo mais. Obrigado Tatiana por todo o carinho e preocupação, e
por conseguires ter feito com que me sentisse bem comigo mesmo.

Obrigado Miguel Musta pelos bons momentos da vida finlandesa
com um travozinho português que levámos. Obrigado Ana pelo teu
amor e paciência durante o tempo que estive fora. Kiitos Jaakko for
helping me to get along well in Finland. Spaciba balshoe Petr for your
major contribution for my happy life during the years in Tampere, I
would have returned home earlier if it wasn’t for you.

Estou-vos eternamente grato minha família. Obrigado mano Mi-
guel, avô Domingos, e tio Jorge, pela vossa ajuda e consideração.
Obrigado vovós Ivone e Claudina por sempre me tratarem como se
eu fosse o vosso menino pequenino. Muito obrigado mãe Lena, tu que
representas melhor que ninguém aquele apoio que nunca faltou.

à mãe Lena,

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problems . 3

1.2.1 Complexity of framework reuse interfaces 3
1.2.2 Defining DSL concepts . 4
1.2.3 Mapping DSL concepts to framework elements 5
1.2.4 Building and maintaining code generators 7

1.3 Approach . 8
1.3.1 Framework specialization aspects 9
1.3.2 Domain-oriented reuse interfaces (DORIs) 10

1.4 Contributions . 13
1.5 Thesis Outline . 14

2 The Problem of Supporting Framework Usage 15
2.1 Object-Oriented Frameworks . 15

2.1.1 Hot spots . 16
2.2 Case Study: JHotDraw . 19

2.2.1 Difficulty of understanding hot spots 20
2.3 Framework usage support strategies 24

2.3.1 Documentation . 24
2.3.2 Instantiation tools . 25
2.3.3 DSL . 25

2.4 DSLs for Instantiating Frameworks 26
2.4.1 Identification of concepts and relationships 27
2.4.2 Language definition . 27

xiii

CONTENTS

2.4.3 Transformation definition 30
2.4.3.1 Difficulties of generating framework-based code . 32

2.5 Towards the Proposed Approach 33

3 Framework Specialization Aspects 37
3.1 Overview . 37
3.2 Aspect-Oriented Programming . 39

3.2.1 Paradigm . 39
3.2.2 AOP concepts . 40

3.3 Concept . 46
3.4 Capturing Framework Hot Spots 48

3.4.1 Class inheritance and object parameterization 49
3.4.2 Hook method overriding 51
3.4.3 Structuring specialization aspects with inheritance 54

3.4.3.1 Hierarchies of pluggable objects 54
3.4.3.2 Generalizing common behavior 57

3.4.4 Object composition and interface implementation 61
3.4.5 Implementing relationships with specialization aspects . . 64
3.4.6 Ordering of application aspects 67

3.5 Benefits . 67
3.6 Discussion . 68

4 Patterns for Framework Specialization Aspects 69
4.1 Example Framework . 69
4.2 Pattern Language Overview . 72
4.3 Template Pointcut: an AspectJ Idiom 76
4.4 Composition Hook Method . 78
4.5 Self-Pluggable Object . 81
4.6 Multi-Context Self-Pluggable Object 85
4.7 Abstract Self-Pluggable Object 88
4.8 Self-Pluggable Type Hierarchy . 92
4.9 Association Object . 95
4.10 Example Framework Revisited . 98
4.11 Discussion . 100

xiv

CONTENTS

5 Domain-Oriented Reuse Interfaces 101
5.1 Overview . 101
5.2 Concept . 104
5.3 Expressing Modeling Constructs 106

5.3.1 Annotations . 107
5.4 DORI Example . 110

5.4.1 Example Framework . 110
5.4.1.1 Domain variability model 110
5.4.1.2 Conventional reuse interface 111

5.4.2 DORI Modules . 113
5.4.2.1 Concepts and attributes 114
5.4.2.2 Composite associations 116
5.4.2.3 Abstract concepts and inheritance 118
5.4.2.4 Multi-parent child concepts 120
5.4.2.5 Open and accessible concepts 122
5.4.2.6 Directed associations 124

5.5 Discussion . 127

6 Automated Domain-Specific Modeling Languages 129
6.1 Tool Support for Building DSLs using DORIs 129
6.2 Building DSMLs using DORIs . 132

6.2.1 Overview . 132
6.2.2 Meta-modeling . 134
6.2.3 Extraction of meta-models from DORIs 135
6.2.4 Generation of DORI-based code 137

6.3 ALFAMA Tool . 140
6.4 Discussion . 144

7 Evaluation 147
7.1 Revisiting JHotDraw . 147

7.1.1 Specialization aspects / DORI 147
7.1.2 Comparison with conventional instantiation 150

7.2 Case Study: Eclipse Rich Client Platform 151
7.2.1 Framework description . 151

xv

CONTENTS

7.2.2 Conventional instantiation 152
7.2.3 Specialization aspects / DORI 153
7.2.4 Comparison with conventional code generation 155

7.2.4.1 Meta-model fragment 156
7.2.4.2 Conventional generator in Java 156
7.2.4.3 Modularity . 158
7.2.4.4 Extensibility . 161
7.2.4.5 Accidental complexity 162
7.2.4.6 Integration of manual code 164
7.2.4.7 Size . 166

7.3 Discussion . 167
7.3.1 Methodological risks . 167
7.3.2 Limitations . 168

8 Related Work 169
8.1 Combining Frameworks and Aspects 169
8.2 Feature-Oriented Programming (FOP) 171

8.2.1 Feature models . 171
8.2.2 FOP languages . 173
8.2.3 Discussion . 176

8.3 Domain-Specific Modeling (DSM) 178

9 Conclusions and Future Work 181
9.1 Summary of Contributions . 181
9.2 Future Work . 182

9.2.1 Constraints on DSMLs . 182
9.2.2 Concrete syntax of DSMLs 183
9.2.3 Integration of Frameworks and their DSMLs 184

9.3 Final Remarks . 184

References 187

xvi

List of Figures

1.1 Generation of framework-based applications using DSLs. 3
1.2 Scattering and tangling in model-to-code transformations. 6
1.3 Specialization aspects enable to shorten the gap between concepts

and framework-based code. 10
1.4 Absence of scattering and tangling in model-to-code transforma-

tions when using specialization aspects. 11
1.5 DORI-based DSL engineering. 12

2.1 Mapping between framework concepts and hot spots’ classes. . . . 18
2.2 Screenshot of an application based on JHotDraw. 19
2.3 Fragment of JHotDraw’s reuse interface. 21
2.4 Conventional JHotDraw instantiation. 23
2.5 Domain variability model for JHotDraw (simplified). 28
2.6 Different concrete syntax for a same application model. 29
2.7 JHotDraw-based code that implements the model of Figure 2.6,

and corresponding screenshot. 31

3.1 Specialization aspects and application aspects. 39
3.2 Weaving of aspects in a base program: homogeneous and hetero-

geneous concerns. 40
3.3 Conceptual model for specialization aspects and application aspects. 47
3.4 Specialization aspect capturing class inheritance. 50
3.5 Specialization aspect capturing hook method overriding. 52
3.6 Hierarchy of pluggable objects (diagram). 55
3.7 Hierarchy of pluggable objects (code). 56

xvii

LIST OF FIGURES

3.8 Structuring specialization aspects with inheritance (diagram). . . 58
3.9 Structuring specialization aspects with inheritance (code, part 1). 59
3.10 Structuring specialization aspects with inheritance (code, part 2). 60
3.11 Specialization aspect capturing object composition (diagram). . . 62
3.12 Specialization aspect capturing object composition (code). 63
3.13 Specialization aspect capturing a relationship (diagram). 65
3.14 Specialization aspect capturing a relationship (code). 66
3.15 Aspect for defining the order of application aspects. 67

4.1 Reuse interface of the example framework. 70
4.2 Modular Hot Spots pattern language. 73
4.3 Template Pointcut idiom. 77
4.4 Composition Hook Method pattern. 79
4.5 Self-Pluggable Object pattern. 82
4.6 Multi-Context Self-Pluggable Object pattern. 86
4.7 Abstract Self-Pluggable Object pattern. 89
4.8 Self-Pluggable Type Hierarchy pattern. 93
4.9 Association Object pattern. 96
4.10 Modular Hot Spots for the example framework. 98

5.1 The role of domain and application engineers in DORI-based de-
velopment. 102

5.2 Conceptual model of DORIs (top) and DORI-based applications
(bottom). 105

5.3 Modeling constructs that can be represented in a DORI. 107
5.4 Domain variability model of the example framework. 110
5.5 Conventional reuse interface of the example framework. 111
5.6 Example application model and its realization. 113
5.7 Graphical layout of the presentation of DORI Module examples. . 114
5.8 Expressing concepts in DORIs. 115
5.9 Expressing composite associations in DORIs. 117
5.10 Ordering of association links. 118
5.11 Expressing abstract concepts and inheritance in DORIs. 119
5.12 Expressing multi-parent child concepts in DORIs. 121

xviii

LIST OF FIGURES

5.13 Expressing open concepts in DORIs. 123
5.14 Expressing many-to-one associations in DORIs. 124
5.15 Expressing many-to-many associations in DORIs. 126
5.16 Converting a many-to-many association into a composite associa-

tion plus a many-to-one association. 127

6.1 Components of a tool for building DORI-based DSLs. 130
6.2 Overview of the proposed solution for building DORI-based DSMLs.133
6.3 Meta-model for defining meta-models (meta-meta-model). 134
6.4 Common meta-model which is extended by all the meta-models. . 135
6.5 Algorithm for obtaining a meta-model from a DORI. 136
6.6 Meta-model obtained from the DORI given in Section 5.4, by ap-

plying the algorithm of Figure 6.5. 137
6.7 Application model (instance of the meta-model of Figure 6.6) used

in the example of Section 5.4. 138
6.8 Algorithm for generating application code from an application model.139
6.9 Domain engineering with ALFAMA. 142
6.10 Application engineering with ALFAMA. 143

7.1 Domain variability model for JHotDraw (simplified). 148
7.2 JHotDraw instantiation using specialization aspects. 150
7.3 Screenshot of an application based on Eclipse RCP. 152
7.4 Illustrative fragment of the domain variability model of Eclipse RCP.154
7.5 Meta-model fragment for comparison. 157
7.6 Conventional code generation for the fragment of concepts. 159
7.7 Generator part that handles the main class of the application. . . 160
7.8 Generator part that handles the actions. 162
7.9 Example DORI module for a new maximize action. 162
7.10 Generator part that handles the menus. 163
7.11 Generator part that handles the menu items. 165
7.12 Generator part that handles open actions. 165

8.1 Example of a feature model. 172
8.2 Valid feature configuration of the feature model of Figure 8.1. . . 172

xix

LIST OF FIGURES

8.3 Feature model of Figure 8.1 represented as a conceptual model. . 176
8.4 Instance of the classes of Figure 8.3, representing the feature con-

figuration given in Figure 8.2. 177

xx

List of Tables

2.1 Concepts of a JHotDraw-based application. 21

6.1 Examples of suitable technologies for developing DSLs. 130

7.1 Pattern instances on the specialization aspects of JHotDraw. . . . 149
7.2 Adaptation mechanisms for example concepts of Eclipse RCP. . . 153
7.3 Examples of modeling constructs in the DORI for Eclipse RCP. . 155
7.4 Pattern instances in the specialization aspects of Eclipse RCP. . . 155
7.5 Modeling constructs and adaptation mechanisms for the concepts

of Figure 7.5. 157
7.6 LOC for conventional generator and DORI. 166

xxi

Chapter 1

Introduction

This chapter introduces the context of this dissertation in Section 1.1. Section
1.2 describes the problems addressed by the work of this dissertation. Section 1.3
summarizes the proposed solution to the problems, while Section 1.4 enumerates
the main contributions. Finally, Section 1.5 outlines the remaining chapters of
this dissertation.

1.1 Context

A state-of-the-practice approach for achieving a reusable software design together
with its implementation is to build an object-oriented framework (Johnson &
Foote, 1988), hereinafter, simply framework. A framework is typically associated
with a certain domain, which can have a narrow scope (e.g. software product-line
(SEI, 2008)), or a wider one (e.g. GUI framework). Frameworks are a powerful
and established means for building reusable software (Fayad et al., 1999) that
allow a set of related applications to have a common implementation of their
architecture and shared functionality. For instance, software product-lines apply
framework-based development for achieving large-scale reuse (Bosch, 2000).

A framework-based application is an application that is built using a given
framework. The set of framework elements that have to be known by application
developers in order to build applications is referred to as the framework’s reuse
interface, while the process of building a framework-based application is referred
to as framework instantiation.

1

1. INTRODUCTION

A powerful way to support framework usage is to develop a domain-specific
language (DSL), which enables framework-based applications to be generated
from high-level descriptions that are expressed using domain concepts. By adopt-
ing this approach, application code is generated from application models, instead
of being manually coded using the framework classes directly. The term “F-DSL”
is used throughout this dissertation for referring to a DSL that generates ap-
plications based on a given framework. F-DSL solutions have a major impact
in terms productivity. Application developers are relieved of understanding both
the framework and its implementation language, and they are able to concentrate
only on domain complexity. In fact, the users of an F-DSL may even be domain
experts that are not programmers.

An F-DSL is used to describe application models, which are the input for
generating framework-based applications. Therefore, an F-DSL has to embrace
all the concepts that may be involved in all possible applications based on the
framework. The definition of the concepts of an F-DSL can be given in terms of a
domain variability model (Pohl et al., 2005). A domain variability model describes
the variability offered by the framework, i.e. where variation occurs within the set
of applications (variation points), and which are the possible variable elements
(variants) (Gurp et al., 2001). The domain variability model can be thought of
as being a meta-model that defines the modeling language in which application
models are described.

In order that an F-DSL can be a generative language, it must have an asso-
ciated transformation definition, which accepts application models as input and
outputs code that instantiates the framework. Using the terminology associated
with generative software development (Czarnecki & Eisenecker, 2000), Figure 1.1
depicts framework-based development using F-DSLs. On the one hand, domain
abstractions are part of the problem space, i.e. the domain variability model and
the application models. On the other hand, implementation abstractions are part
of the solution space, i.e. the framework and the framework-based applications. A
domain variability model sets the abstract syntax of the F-DSL, while the trans-
formation defines its semantics. The concrete syntax depends on the language
technology that is used (e.g. EMF (Eclipse Foundation, 2007d), UML Profiles
(OMG, 2004), XML (W3C, 2008a), attribute grammars). The transformation

2

1.2 Problems

domain
variability

model

application
model

instances of

transformation

Object-Oriented
Framework

Application

problem space solution space

models variability of

instantiate

Language technology, e.g.
EMF, UML Profiles,

XML, Attribute grammars

Code generator, e.g.
GPL, YACC

(or)
Transformation language, e.g.

QVT, XSLT

General-purpose
object-oriented
language, e.g.
Java, C++, C#

Figure 1.1: Generation of framework-based applications using DSLs.

is typically realized by a code generator written in a general-purpose language
(GPL) or using a compiler generator (such as YACC (Johnson, 1979)). Another
less common option is to realize the transformation using a transformation lan-
guage associated with the adopted language technology, such as XSLT (W3C,
2008b) in the case of XML, or QVT (OMG, 2006) for EMF-like technologies.
Transformation languages are intended to be a high-level and more elegant mech-
anism to define the transformations, but the immaturity or lack of expressiveness
often makes these languages difficult to use in for model-to-code transformations.

1.2 Problems

The adoption of F-DSL solutions is in the first place motivated by the difficulty of
using frameworks. The reason for this difficulty is mainly due to the complexity
of framework reuse interfaces. However, although F-DSLs are capable to hide the
complexity of reuse interfaces, their realization also has its own difficulties. Such
difficulties constitute an obstacle in the development of F-DSLs.

1.2.1 Complexity of framework reuse interfaces

Learning a framework’s reuse interface is recognized as a difficult and time-
consuming task (Moser & Nierstrasz, 1996). In order that an application de-

3

1. INTRODUCTION

veloper can successfully use a framework, he or she has to master its reuse in-

terface. Fully mastering the reuse interface of a large and complex framework

can take months. The main obstacles are related with the identification of the

relevant framework elements for implementing a certain aspect in a framework-

based application and understanding the collaborations between the objects of

an application. The identification of the relevant framework elements is difficult

both due to the large number of framework classes and the fact that typically

only a fraction of the elements of a framework class is relevant for building an ap-

plication. Understanding the collaborations between objects is difficult because

one has to understand parts of the framework design, at least to a certain extent.

The difficulties related with learning hinder the successful adoption of frame-

works. Due to this problem, application developers are usually supplied with

other development artifacts in addition to the framework classes, such as docu-

mentation (e.g. Johnson, 1992; Krasner & Pope, 1988), instantiation tools (e.g.

Fairbanks et al., 2006; Hakala et al., 2001; Ortigosa et al., 2000), or an F-DSL

(e.g. Durham & Johnson, 1996; Roberts & Johnson, 1997). Among these dif-

ferent strategies for overcoming the problem of framework learning, the F-DSL

approach is the most effective given that it raises the abstraction level to domain

concepts, hiding the complexity of a framework’s reuse interface. However, al-

though F-DSLs are appealing from an application development viewpoint, they

may be difficult to realize.

Despite the existing solid technology for building DSLs (e.g. Eclipse Founda-

tion, 2007d; Johnson, 1979; MetaCase, 2008), F-DSLs are not widespread. Given

the attractiveness of F-DSLs, this can be considered as a hint that suitable so-

lutions — while cost-effective — are difficult to build and maintain. There are

two fundamental issues related to the development of an F-DSL: the abstraction

level of the language concepts and the complexity of the mapping between con-

cepts and framework elements. These issues have a big impact on the required

effort to implement and maintain the code generator (or equivalent). In order to

successfully build an F-DSL, the trade-offs associated with these two issues have

to be well-balanced.

4

1.2 Problems

1.2.2 Defining DSL concepts

When building an F-DSL, the first issue that arises is to know exactly which
concepts should be included in the language. Ideally, the concepts of an F-DSL
should resemble as much as possible “pure” domain concepts (i.e. they should
not be related with implementation issues), in order to have an effective rise in
the abstraction level. However, this is not always the case. At two extremes, the
definition of the concepts of an F-DSL may follow either a domain-oriented or an
implementation-oriented approach.

In case a domain-oriented approach is followed, the concepts are defined ac-
cording to the actual domain concepts without taking into account the framework
implementation. In this case, the code generator logic is likely to be complicated,
due to mismatches between the concepts and framework elements. Although this
is the most convenient approach from an application development viewpoint, the
complexity of the code generator may compromise a successful implementation
and evolution of the F-DSL.

In case an implementation-oriented approach is followed, the concepts are
closely tied to the framework elements, implying that the F-DSL will have con-
cepts that are not purely domain-related. In this case, the code generator logic
tends to be more simple, given that the transformation is more straightforward
(Pohjonen & Tolvanen, 2002). However, although application developers might
be more productive when using an implementation-oriented F-DSL instead of us-
ing the framework directly, it is more beneficial to have a language with a higher
abstraction level (Kelly & Tolvanen, 2008). In order that the full potential of
F-DSL solutions can be reached, the F-DSLs should be as domain-oriented as
possible.

Having the F-DSL concepts defined, these have to be mapped to framework
elements, so that framework-based code can be generated from an application
model.

1.2.3 Mapping DSL concepts to framework elements

In the object-oriented programming paradigm, concepts are intended to have a
direct correspondence to well-identified implementation elements — the classes.

5

1. INTRODUCTION

In turn, concept instances are represented in objects which are parameterized
and composed. However, in general, the reuse interface of a framework is not
structured according to the concepts that can be instantiated in a framework-
based application. In order to instantiate a concept in an application, mechanisms
other than class instantiation may have to be used, namely, inheritance and hook
method overriding. If the reuse interface would only be composed by classes
representing the domain concepts of an application, the transformation of the
concept instances of an application model into framework-based code would be
straightforward.

Following a domain-oriented approach enables the development of F-DSLs
with a higher abstraction level than if following an implementation-oriented ap-
proach. However, the higher the abstraction level of the language concepts is,
the bigger the gap between concepts and framework elements, and in turn, the
greater the complexity of the transformation.

An issue that significantly affects the complexity of the transformation is the
many-to-many mapping between the concept instances of an application model
and the framework-based code modules that represent those concept instances.
The transformation of a single concept instance may affect more than one class,
while the transformation of several concept instances may affect a single code
module. In the general context of translating requirements to design and im-
plementation, the first phenomenon is known as scattering, whereas the latter is
known as tangling (Kiczales et al., 1997). The case of transforming application
models is similar, but the translation is automated by the transformation instead
of being manually performed. This issue is depicted in Figure 1.2. We can see an
example of scattering in the transformation of concept instance C3, which results
in code module M2 and a part of code module M1. On the other hand, we can
see an example of tangling in the transformation of concept instances C1, C2,
and C3, which all affect code module M1.

In principle, raising the abstraction level of the reuse interface of the frame-
work would shorten the gap between concepts and code, which would contribute
to a less complex transformation. However, object-oriented programming lan-
guages are limited with respect to this goal because they do not enable to modu-
larize the instantiation of certain concepts. On the other hand, the transformation

6

1.2 Problems

concept instances code modules

C1

C2

C3

M1

M2

application
model

application
implementation

transformation

Figure 1.2: Scattering and tangling in model-to-code transformations.

could be simplified by lowering the abstraction level of concepts, so that they re-
late more directly to framework elements. However, as explained, this option is
not optimal with respect to F-DSL effectiveness.

1.2.4 Building and maintaining code generators

The transformation of concept instances into framework-based code is typically
realized by a code generator. The difficulty of building and maintaining the
code generator is related to the trade-offs associated with the abstraction level
of F-DSL concepts and their mapping to framework-based code. The many-to-
many nature of this mapping affects the transformation complexity, given that it
implies handling issues related to the generation of interleaved code that pertains
to different concepts. The main difficulty resides in developing and maintaining
a program that generates scattered and tangled code.

Besides the issue of the transformation complexity, code generators have other
characteristics that make the task of implementing them more difficult. One is
their “meta-nature”. A code generator is a program that generates another pro-
gram. This characteristic seriously hinders comprehension, and therefore, the
evolution of code generators. Another characteristic is their fragility. The gen-
erator outputs statements of a certain programming language. The identifiers
of the elements of a reuse interface are manipulated as strings and treated in a
non-compilable way — e.g. a misspelled method name on these statements does
not indicate a compile error. Therefore, code generators can “silently” become
broken when the reuse interface is modified.

7

1. INTRODUCTION

Finally, the need of integrating manual code with generated code may be chal-
lenging. This might be necessary due to domain instability or the need of having
open variation points (Gurp et al., 2001) — i.e. certain variations in applications
that cannot be predefined. Mechanisms for enabling this are referred to as escapes
(Cleaveland, 1988). Ideally, it is not intended that the application developer has
to manipulate or even understand code that is generated, in analogy with the case
of general-purpose programming languages — the assembly language or bytecode
are not meant to be understood by programmers. Therefore, there should exist
mechanisms to integrate manual code that do not require inspection or manipu-
lation of generated code. One of the main difficulties is to allow manual code to
access objects that are instantiated within the generated code.

1.3 Approach

The work in this dissertation addresses the problem of framework usage from two
perspectives. On the one hand, it addresses the complexity of framework reuse
interfaces, while on the other hand, it addresses the development of F-DSLs. This
work can thus be divided into the following approaches:

1. The difficulty of using a framework directly is addressed with a novel ap-
proach for building higher level framework reuse interfaces. Such reuse
interfaces are composed of framework specialization aspects. A specializa-
tion aspect is a reusable module that is used in an application to implement
the instantiation of a concept provided by the framework.

2. The difficulty of developing F-DSLs is addressed with an approach based
on (1), where the specialization aspects are used to completely encode an
F-DSL. Such reuse interfaces are called domain-oriented reuse interfaces
(DORIs) and used to automate the construction of F-DSLs.

Approach (1) is independent from approach (2), whereas approach (2) relies
on (1) and cannot be applied independently. These approaches were validated
by developing specialization aspects and DORIs for two case study frameworks:
JHotDraw (SourceForge, 2006) and Eclipse Rich Client Platform (RCP) (McAffer

8

1.3 Approach

& Lemieux, 2005). The proposed constructs for both specialization aspects and
DORIs were validated by applying the Engineering Method (Zelkowitz &Wallace,
1998). The proposed constructs were tested on the two frameworks until no
further improvement could be achieved and no new constructs were found useful.

The proposed approaches are evolutionary, given that they can be applied to
an existing framework “as is”. The approaches were experimented on both case
studies without modifying the frameworks.

1.3.1 Framework specialization aspects

The development of framework specialization aspects relies on aspect-oriented
programming (AOP) (Kiczales et al., 1997). AOP provides more powerful localiza-
tion and encapsulation mechanisms than conventional object-oriented program-
ming languages, which are exploited to modularize framework hot spots (Pree,
1995). Each hot spot of the framework is expressed in a specialization aspect,
which is an abstract module that is instantiated by application aspects. The ap-
plication aspects represent hot spot adaptations and are the building blocks of a
framework-based application. The main role of AOP technology in the context
of specialization aspects is related to the capability of untangling, namely the
untangling of hot spot adaptations.

The framework that is extended with a set of specialization aspects is re-
ferred to as the base framework. Specialization aspects are capable of forming a
reuse interface that enables the development of framework-based applications at
a higher abstraction level than if using a conventional reuse interface (see Fig-
ure 1.3). The several concepts provided by the framework are represented in the
specialization aspects, while an application is composed by several application as-
pects that instantiate the specialization aspects. For the same concept instances
of a framework-based application, the gap between the concept instances and the
application aspects that implement them is shorter than the gap between the
concept instances and the application code that conventionally instantiates the
framework.

In order to help on the task of enhancing a conventional framework with spe-
cialization aspects, this dissertation also presents a pattern language. The several

9

1. INTRODUCTION

Base Framework

Application
Code

instantiates
(conventionally)

gap

extend

instantiate

gap

problem space solution space

Specialization
Aspect

concept
instances of a

framework-based
appplication

concepts
provided by the

framework

represented in

instances of

Application
Aspect

abstraction level

represented in

Figure 1.3: Specialization aspects enable to shorten the gap between concepts
and framework-based code.

patterns help on finding appropriate situations where specialization aspects are
useful and on how to implement them.

1.3.2 Domain-oriented reuse interfaces (DORIs)

The higher abstraction level of specialization aspects is advantageous in the con-
text of F-DSLs, given that the described gap shortening simplifies the trans-
formation of application models into application code. This transformation is
straightforward, and therefore, easy to implement in a code generator. At the
heart of the transformation simplification is the fact that specialization aspects
enable a one-to-one mapping between elements of an application model and appli-
cation aspects, and thus, they eliminate the scattering and tangling phenomena
of model-to-code transformations described in the previous section (see Figure
1.4).

Current strategies for building an F-DSL rely on the development of artifacts
that are external to the framework, which define DSL concepts and map them
to framework elements. The work in this dissertation proposes a novel technique
for building F-DSLs, which is based on having a framework’s reuse interface

10

1.3 Approach

concept instances application aspects

C1

C2

C3

M1

M3

application
model

application
implementation

transformation

M2

Figure 1.4: Absence of scattering and tangling in model-to-code transformations
when using specialization aspects.

closely tied to domain concepts — a domain-oriented reuse interface (DORI).
Such a reuse interface is structured using specialization aspects, according to the
domain concepts and relationships that are represented in a domain variability
model. A DORI is a framework layer that encodes an F-DSL.

The way concepts are instantiated using the specialization aspects of a DORI
is uniform, in the sense that the instantiation of every concept is achieved using
the same mechanism. This enables the definition of a generic transformation
that is common to all DORIs. Therefore, by having a framework with a DORI,
there is no need of developing a code generator for its F-DSL, given that a generic
generator can handle the transformation. DORIs are intended to be used together
with a generic language workbench (Fowler, 2008), which automatically extracts
DSL definitions from a DORI and is capable of transforming application models
described in that DSL into DORI-based code. In this way, the development of
an F-DSL only relies on a DORI and there is no need to develop any additional
artifact.

Figure 1.5 presents an overview of the proposed approach. Framework devel-
opers (or product-line engineers) build a DORI for a base framework. Building
the DORI requires a combination of framework usage knowledge with a domain
variability model that describes the intended DSL concepts. A DSL definition is
automatically extracted from the DORI. Application developers describe applica-
tions in a model expressed in the DSL according to the application requirements.
The model is given as input to the generic code generator in order to generate

11

1. INTRODUCTION

DORI

Base Frameworkframework
usage

knowledge

DSL Definition

framework
developer

application
developer Application Code

Application Model
application

requirements

generic language w
orkbench

DSL
EXTRACTOR

CODE
GENERATOR

resembles

instance of

automatic generation
input

domain
variability

model

instantiates

Figure 1.5: DORI-based DSL engineering.

application code, which is based on the DORI rather than directly on the base
framework.

The proposed language workbench is intended to be generic, i.e. it can be used
for any framework with a DORI implemented in the supported AOP language.
This dissertation demonstrates how a language workbench for building domain-
specific modeling languages (DSMLs) (DSM Forum, 2007) can be implemented.
A prototype tool that realizes such a language workbench is presented, which
supports AspectJ (Eclipse Foundation, 2007a) as the AOP language and uses
EMF (Eclipse Foundation, 2007d) for expressing the DSLs. The tool is named
ALFAMA1 and it is implemented as a set of Eclipse plugins (Eclipse Foundation,
2007b). ALFAMA stands as a proof-of-concept that the proposed approach for
automating the construction of F-DSLs is feasible.

With respect to the domain-oriented and implementation-oriented approaches
for defining DSL concepts introduced in the previous section, the proposed ap-

1Automatic DSLs for using Frameworks by combining Aspect-oriented and Meta-modeling
Approaches

12

1.4 Contributions

proach is somewhat a “unification” of the two, concentrating on the ability to eas-
ily implement DSLs with concepts that are purely domain-related. Since the DSL
definition is obtained from the DORI, which consists of implementation artifacts,
one could consider the definition of the DSL to be implementation-oriented. How-
ever, the gap shortening is due to an abstraction level rise in the solution space
(the framework), while the definition of concepts sticks to a domain-oriented ap-
proach. The idea is to have the benefits of the implementation-oriented approach
regarding the simplicity of transformation, while preserving the benefits of the
domain-oriented approach regarding the nature of the concepts.

1.4 Contributions

The main contributions of the work in this dissertation are the following:

1. The concept of framework specialization aspects (Santos & Koskimies, 2006;
Santos et al., 2006, 2007);

2. A pattern language for designing and implementing framework specializa-
tion aspects (Santos & Koskimies, 2008);

3. The concept of DORI, and an effective technique for automating the con-
struction of DORI-based DSMLs (Santos et al., 2008);

4. The implementation of the ALFAMA prototype, a language workbench for
building DORI-based DSMLs (Santos, 2007, 2008);

The contributions (1), (3), and (4) were validated through two case studies.
The contribution (2) resulted from the experience of applying (1) in the two case
studies.

13

1. INTRODUCTION

1.5 Thesis Outline

The remainder of this dissertation includes the following chapters:

• Chapter 2 introduces the difficulty of framework learning and presents the
JHotDraw framework as a case study. Different strategies for supporting
framework usage are presented, going into more detail on the development
of F-DSLs, using JHotDraw as an example framework.

• Chapter 3 describes the concept of framework specialization aspects. It
is explained how specialization aspects can capture framework hot spots,
presenting examples of specialization aspects for the JHotDraw framework.

• Chapter 4 presents a pattern language for designing and implementing
framework specialization aspects. A running example of a conventional
framework is enhanced with specialization aspects, and the solutions driven
by the patterns are compared with the conventional instantiation of the
framework.

• Chapter 5 describes the concept of DORI. The constructs that can be used
for defining F-DSLs are explained, as well as how they can be represented
using specialization aspects.

• Chapter 6 explains how a language workbench for building DORI-based
DSMLs can be implemented. The ALFAMA tool is presented as a realiza-
tion of such a language workbench.

• Chapter 7 presents details about the case studies on JHotDraw and Eclipse
RCP. For both frameworks, examples of instances of the patterns of Chap-
ter 4 are given. For a DSML covering a subset of Eclipse RCP concepts,
a solution based on having a conventional generator is compared with a
DORI-based solution.

• Chapter 8 compares the work in this dissertation with related work.

• Chapter 9 draws the conclusions of the research presented in this disserta-
tion, and outlines future work.

14

Chapter 2

The Problem of Supporting
Framework Usage

This chapter introduces object-oriented frameworks and the notion of hot-spots in

Section 2.1. Section 2.2 presents JHotDraw as a case study framework, explaining

how its hot-spots can be adapted and the associated difficulties. Section 2.3

outlines framework usage support strategies. Section 2.4 explains the main tasks

in the development of a domain-specific language for framework instantiation (F-

DSL), using JHotDraw as an example framework. Finally, Section 2.5 outlines

the direction that the work in this dissertation follows.

2.1 Object-Oriented Frameworks

An object-oriented framework is a set of classes that embodies an abstract design

for solutions to a family of related problems (Johnson & Foote, 1988). A frame-

work is a reusable design together with an implementation, which can be used

to build several applications. A framework typically has an architectural nature,

given that it defines the overall application structure, the component types and

their collaborations, and it assumes the main thread of control.

Frameworks have been used extensively for many years, and they can be

classified in three general categories (Fayad et al., 1999):

15

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

• System infrastructure frameworks. These support the development of sys-
tem infrastructure in areas ranging from operating systems to graphical
user interfaces.

• Middleware integration frameworks. These support the integration of dis-
tributed applications and components.

• Enterprise application frameworks. These address large application do-
mains and support the development of end-user applications directly. This
kind of framework is related with software product-lines.

The work in this dissertation is not specially targeted at any specific kind of
framework. However, the proposed approaches are likely to better suit enterprise
application frameworks. The reason is that, unlike system infrastructure and
middleware integration frameworks, enterprise application frameworks typically
offer most of the functionality that is necessary to build an application. Therefore,
the F-DSL can embrace enough concepts for generating complete applications.
Otherwise, the F-DSLs can only cover specific parts of the applications.

2.1.1 Hot spots

A framework provides a set of (domain-specific) concepts for developing appli-
cations, which instantiate those concepts according to certain requirements. A
framework hot spot (Pree, 1995) is a place in the framework where adaptation oc-
curs. Hot spots have to be anticipated by framework developers when designing
the framework. Application developers write framework-based code that adapts
the framework hot spots according to their needs. The adaptation of a hot spot
represents the instantiation of a concept provided by the framework.

The set of classes involved in the hot spots of a framework forms its reuse
interface. Although the number of classes involved in the reuse interface may be
large, it is typically a relatively small fragment of all framework classes. Given
that a framework’s reuse interface is mixed with the remaining framework classes,
and the fact that the number of classes of a non-trivial framework is typically
large, hot spots can be difficult to locate if they are not documented properly.

16

2.1 Object-Oriented Frameworks

Once knowing which are the concepts provided by the framework, the appli-
cation developer has to locate the corresponding hot spots and understand how
to adapt them. The two basic type of elements involved in hot spots are template
methods and hook methods. Template methods define abstract behavior that is
completed by hook methods, which are given by framework-based applications
for customizing behavior. Therefore, in order to instantiate concepts, applica-
tion developers have to know which are the relevant hook methods and how to
implement them.

Given a certain framework, the kind of hot spot adaptations that are required
for building applications characterizes the framework reuse interface:

• White-box. This kind of adaptation relies on inheritance and dynamic bind-
ing. Framework-based applications have to subclass framework classes and
implement hook methods. Although inheritance is a powerful mechanism,
it usually requires understanding framework internals, at least to a certain
degree of detail.

• Black-box. This kind of adaptation relies on object composition and del-
egation. In this case, application developers only need to care about the
external interfaces of the framework classes.

Black-box frameworks are usually a result of several development iterations
and are harder to design. On the other hand, they are less flexible than white-
box frameworks. Frameworks typically have a gray-box reuse interface, implying
that some of its hot spots have to be adapted with white-box mechanisms, while
others require black-box mechanisms.

Hot spots may rely on different object-oriented mechanisms or combinations
of them. The fundamental mechanisms that are supported by all the mainstream
object-oriented languages (such as Java, C++, or C#), are the following:

1. Class inheritance. An application class inherits from a framework class.

2. Hook method overriding. An application class overrides hook methods of
the classes obtained in (1) for customizing behavior.

17

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

3. Object composition. Instances of framework classes are composed in order
to include components in an application or to establish associations between
them.

4. Object parameterization. Instances of framework classes are parameter-
ized in order to customize the components according to application require-
ments.

5. Interface implementation. An application provides a component by imple-
menting a framework interface.

Mechanisms (1) and (2) are the fundamental mechanisms for white-box adap-
tation, whereas mechanisms (3) and (4) are the fundamental mechanisms for
black-box adaptation. Typically, the adaptation of a certain hot spot involves a
combination of two or more mechanisms. For instance, the combinations of (1)
and (2), (3) and (4), (2) and (3), (3) and (5), occur often.

A hot spot may involve several classes. On the other hand, typically only
fragments of those classes (e.g. some of their methods) are relevant in the con-
text of a particular hot spot, and common fragments may be related to different
hot spots. Given that a hot spot is associated with a concept provided by the
framework, this implies a many-to-many mapping between concepts and classes.
Therefore, the instantiation of a single concept may involve one or more frame-
work classes, while one framework class may be relevant for instantiating zero or
more concepts. Figure 2.1 illustrates this phenomena.

concepts framework class

hot spot

...

Figure 2.1: Mapping between framework concepts and hot spots’ classes.

18

2.2 Case Study: JHotDraw

2.2 Case Study: JHotDraw

JHotDraw serves the purpose of building drawing applications for structured

graphics. Figure 2.2 presents a screenshot of a JHotDraw-based application, an-

notated with the main framework concepts. A drawing application has a tool bar

that contains creation tools (which can optionally have undo support) for inserting

node figures (e.g. rectangle, ellipse) and connection figures (e.g. line, arrow) on

the drawings. For a given connection figure, valid source and target node figures

can be specified. For example, the line can only connect rectangles to ellipses.

The application can have menus, which contain commands. The framework pro-

vides a set of default figures and connection figures, as well as default commands

(e.g. exit, save). On the other hand, JHotDraw-based applications may include

application-specific figures, connection figures, or commands, by implementing

framework interfaces.

drawing application

creation
tool

(undo optional)

node
figure

(rectangle)

connection figure
(valid connection between rectangle and ellipse)

menu command

Figure 2.2: Screenshot of an application based on JHotDraw.

19

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

2.2.1 Difficulty of understanding hot spots

One of the main problems of framework-based development is the steep learning
curve (Moser & Nierstrasz, 1996; Pree, 1995). Application developers have to
know which are the concepts provided by the framework, and then to locate the
hot spots associated with those concepts within the large set of framework classes.
Given the many-to-many mapping between concepts and hot spots’ classes (de-
picted in Figure 2.1), it is difficult to understand a hot spot in isolation if its
classes are also involved in other hot spots. This issue is related with the scat-
tering and tangling phenomena.

In the general context of translating requirements to implementation, the scat-
tering and tangling phenomena compromise software comprehension and evolu-
tion (Tarr et al., 2004). On the one hand, the implementation of framework-based
applications suffers from scattering due to the fact that a single requirement —
associated with an instance of a framework concept — may involve more than one
application class. On the other hand, framework-based applications also suffer
from tangling given that a single application class may be related to more than
one requirement.

Table 2.1 presents a list of concepts of a JHotDraw-based application, and
the adaptation mechanisms that are involved in each concept usage. The table
contains the essential concepts that are used in almost every application. Notice
that there is at least one case for each adaptation mechanism, as well as several
examples of combination of adaptation mechanisms.

Figure 2.3 presents the fragment of JHotDraw’s reuse interface that is rele-
vant for the concepts listed in Table 2.1, while the following list details how an
application developer has to proceed in order to use those same concepts. Each
concept is identified by the id number given in the table. When the concept
requires developing a new class, a letter is used to identify that class.

1. Implementing an “empty” drawing application requires developing a class
(A) that inherits from DrawApplication, which has the hook method cre-
ateTools(JToolBar) for plugging figures and creation tools, and the hook
method createMenus(JMenuBar) for plugging menus and commands on those
menus.

20

2.2 Case Study: JHotDraw

Id Concept Inheri- Interface Hook Object Para-
tance Method Composition meters

1 Draw application
(empty)

√

2 Default node figure
(e.g. Rectangle)

√

3 Application-specific
node figure

√

4 Default connection fig-
ure (e.g. Line)

√

5 Application-specific
connection figure

√

6 Valid connection on (4)
√ √

7 Valid connection on (5)
√

8 Creation tool for (2-5)
√ √

9 Undo on (8)
√

10 Menu on (1)
√ √ √

11 Default command on
(10)

√

12 Application-specific
command on (10)

√ √

Table 2.1: Concepts of a JHotDraw-based application.

<<hook>> createMenus(JMenuBar) : void
<<hook>> createTools(JToolBar) : void

DrawApplication

...

<<interface>>
Tool

...
UndoableTool

...
CreationTool

...

<<interface>>
Figure

...
Rectangle

...
Ellipse

<<hook>> canConnect(Figure, Figure) : bool
...

<<interface>>
ConnectionFigure...

...
LineConnection ...

...
CommandMenu

execute() : void
...

<<interface>>
Command

......
CopyCommand

Figure 2.3: Fragment of JHotDraw’s reuse interface.

21

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

2. Using a default node figure requires instantiating a framework class that
implements the interface Figure, as for instance Rectangle or Ellipse.

3. Using an application-specific node figure entails developing a class (N) that
implements the interface Figure.

4. Using a default connection entails instantiating a framework class that im-
plements the interface ConnectionFigure, as for instance LineConnection. The
interface ConnectionFigure has the hook method canConnect(Figure, Figure)
for customizing the valid source and target node figures that the connection
figure may connect.

5. Using an application-specific connection figure entails developing a class (L)
that implements the interface ConnectionFigure.

6. Defining a valid connection for a default connection figure entails developing
a class (V) that inherits from the framework class that implements the
interface ConnectionFigure, overriding the hook method canConnect(Figure,
Figure).

7. Defining a valid connection for an application-specific connection figure en-
tails modifying the class L introduced in (5) (which implements the con-
nection figure), namely on the hook method canConnect(Figure, Figure).

8. Including a creation tool entails modifying the class A introduced in (1),
by overriding the hook method createTools(JToolBar). Figure or connection
figure objects (2-5) have to be wrapped in an instance of the framework
class CreationTool and plugged in the parameter of type JToolBar.

9. Including undo support on a creation tool entails modifying the class A
introduced in (1), on the hook method createTools(JToolBar). The Cre-
ationTool objects introduced by (8) have to be wrapped in an instance of
UndoableTool.

10. Including a menu in the application entails modifying the class A introduced
in (1), by overriding hook method createMenus(JMenuBar). One has to plug
an instance of CommandMenu in the parameter of type JMenuBar.

22

2.2 Case Study: JHotDraw

11. Including a default command in a menu entails modifying the class A in-
troduced in (1), namely the hook method createMenus(JMenuBar). One
has to plug an instance of a framework class that implements the interface
Command (e.g. CopyCommand in the menu objects introduced in (10)).

12. Including an application-specific command entails developing a class (C)
that implements the interface Command. Such a command can be plugged
as in (11).

Figure 2.4 depicts the relations between the tasks associated with the concepts’
usage, namely regarding (a) development of a new class in the application, (b)
modifications of the classes of an application, and (c) tangled instantiation of
concepts. Consider the tangling relations to be transitive, i.e. if a is tangled with
b, and b is tangled with c, then a is tangled with c.

Given the difficulties related to learning, a framework can hardly be given to
application developers without some form of usage support, which relieves the
burden of having to learn the framework just by reading its classes. In order to
support framework usage, several approaches following different strategies have
been proposed, which are detailed next.

(1) Draw
application

(2) Default
node

(3) Specific
node

(4) Default
connection

(5) Specific
connection

new class (A)

(6) valid
connection

(7) valid
connection

new class (N)

new class (L)

new class (V)

new class (C)

(9) Undo

(8) creation
tool

(10) Menu(11) Default
command

(12) Specific
command

class
concept instance

originates
modifies
code tangling

Figure 2.4: Conventional JHotDraw instantiation.

23

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

2.3 Framework usage support strategies

Due to the reasons explained previously, it is extremely important a framework
to be accompanied with some sort of support for using it. The usage support
can follow one of three main strategies: documentation, instantiation tools, and
domain-specific language (referred to as F-DSL in this dissertation).

2.3.1 Documentation

This kind of support consists in providing manuals for learning how to use the
framework. A manual can be organized in different ways. A popular way is to
have documentation in the form of a cookbook (Krasner & Pope, 1988), where
several “recipes” for adapting the framework hot spots are presented to applica-
tion developers, typically using examples. Another form of organizing framework
documentation is by means of design patterns (Johnson, 1992), where several
framework-specific patterns are organized in a collection or in a pattern language.
Although each pattern has the role of a “recipe”, documentation organized in pat-
terns is more structured.

Steyaert et al. (1996) proposed the concept of reuse contracts, which are in-
terface descriptions that offer guidelines for reusing assets (e.g. frameworks).
Although one of the main purposes of reuse contracts is to aid on managing
evolution of reusable assets, they can be used as structured documentation of a
framework’s reuse interface that assists application developers in the development
of framework-based applications.

The cost of producing good framework documentation is typically high (Fayad
et al., 1999). In order to reduce this cost, an approach for developing minimalist
documentation has been proposed by Aguiar (2003), having in mind also the
purpose of facilitating the use of the documentation by application developers.

Documentation approaches just provide additional information for framework
learning, while they do not hide framework complexity. Moreover, in addition to
the cost of producing the documentation, there is also the cost of maintaining it.
Case studies on industrial settings report that existing framework documentation
is often either inconsistent or incomplete (Bosch, 1999). In order to mitigate the
lack of documentation, it is possible to mine usage examples from code repositories

24

2.3 Framework usage support strategies

(e.g. Holmes et al., 2005). However, this requires a rich repository of framework-
based code, and it also does not hide framework complexity.

2.3.2 Instantiation tools

Instantiation tools support framework usage by assisting the development of
framework-based applications. These tools are based on formalization of
framework-specific patterns, which are used to guide the framework instantiation
process and to automate certain tasks (e.g. partial code generation). SmartBooks
(Ortigosa et al., 2000), JavaFrames (Hakala et al., 2001), and Design Fragments
(Fairbanks et al., 2006), are examples of such tools. Instantiation tools require
framework developers to annotate the framework, either internally or externally.
Hautamäki & Koskimies (2006) propose an approach to find, specify and use the
reuse interface of a framework by means of framework-specific patterns.

Instantiation tools are an enhanced form of framework documentation, which
is capable of automating certain tasks. Although the complexity of the framework
is partially hidden from application developers, framework-based applications are
given in terms of solution space abstractions. Application developers have to
manipulate framework-based code, and therefore, they need to understand the
reuse interface up to a certain extent.

Viljamaa (2003) proposes an approach to reverse engineer framework reuse
interfaces. However, such an approach is not completely reliable, especially in
terms of completeness and precision.

2.3.3 DSL

The strategy that is commonly agreed to be the most effective for supporting
framework usage is to develop an F-DSL, which is used for generating framework-
based code from high-level application descriptions. By having an F-DSL, the
framework may become completely hidden from application developers, and the
abstraction level can thus be raised. It might happen that the application de-
velopers are not programmers, but rather domain experts, given the abstraction
level raise that this strategy allows. This kind of solution is usually realized with
the aid of language workbenches (Fowler, 2008). Language workbenches are IDEs

25

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

for suitable for developing DSLs. MetaEdit+ (MetaCase, 2008), Microsoft DSL
Tools (Greenfield & Short., 2005), and GME (Ledeczi et al., 2001), are examples
of such language workbenches.

The three strategies for framework usage support differ in terms of realization
effort, and effectiveness in terms of the aid they provide to application developers.
F-DSL approaches require the biggest up-front effort, but are definitely the most
effective strategy. Documentation approaches typically require the least effort to
realize, but accordingly, they are likely to be the least effective. Instantiation
tools typically require more effort than documentation, and they are roughly in
between documentation and F-DSLs with respect to effectiveness.

2.4 DSLs for Instantiating Frameworks

DSLs work well with frameworks given that both have the goal of creating related
applications within a certain domain. However, non-trivial F-DSLs are in general
not easy to realize. This section explains the necessary tasks for realizing an
F-DSL and the associated difficulties.

There are three fundamental tasks involved in the realization of an F-DSL:

1. Identification of concepts and relationships. Through extensive domain
analysis, the scope of domain concepts and how they relate has to be de-
fined. Although the concepts should have been identified when building
the framework in the first place, in many cases this is likely not to have
happened.

2. Language definition. Once (1) is achieved, the F-DSL syntax has to be
formally defined. It is important to distinguish between the abstract and
concrete syntax of the DSL. Conceptual models are suitable for expressing
the concepts and their relationships. The abstract syntax represents the
underlying structure of concepts, which can be expressed in a formal con-
ceptual model. The concrete syntax is what is visualized when the F-DSL
is being used.

26

2.4 DSLs for Instantiating Frameworks

3. Transformation definition. Once having (2), a transformation between F-

DSL concepts and framework-based code has to be defined. The transfor-

mation can be defined in terms of the abstract syntax of the language.

The next subsections detail these tasks and discuss the problems that are

associated to them.

2.4.1 Identification of concepts and relationships

A framework provides a set of concepts that can be instantiated in a framework-

based application. The concepts have relationships between them. Often, frame-

work concepts are not well-defined and their scope is not delimited. However, in

order to develop an F-DSL, the concepts that are to be covered by the language

have to be clearly identified, given that they are going to be first-class entities in

the F-DSL. The concepts have to be identified with a certain degree of precision,

so that they can be transposed to a formal language definition seamlessly.

Especially when a domain is not stable, it might be hard to set the scope of

the concepts definition, given that new concepts emerge frequently. This implies

constant modifications in the F-DSL (syntax and transformation). If the points

where new concepts can be introduced were not anticipated, the cost of evolving

the F-DSL constantly is likely to be high. In order to avoid frequent F-DSL

modifications, the solution may take into account mechanisms for integrating

manual code with code that is generated from the models, so that features that

are not represented in the F-DSL can be manually encoded. Such mechanisms

may be referred to as escapes (Cleaveland, 1988).

The work in this dissertation does not address domain analysis in any way.

It is assumed that domain analysis has been performed, so that the framework

concepts for developing an F-DSL have been identified. For instance, assume

that the concepts of JHowDraw described previously would set the scope of an

F-DSL. Such concepts will be used in the following sections for presenting a

running example.

27

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

2.4.2 Language definition

Using model-driven engineering terminology, DSL concepts and their relation-

ships can be defined in a meta-model, while a description in a certain DSL is a

model, which is an instance of the meta-model. Figure 2.5 presents a concep-

tual model for applications based on the JHowDraw framework, describing the

concepts, their attributes, and the relationships between them. Such a concep-

tual model can be thought of as being a meta-model that defines the abstract

syntax of the F-DSL. For instance, the meta-model can be formally defined us-

ing EMF (Eclipse Modeling Framework, Eclipse Foundation, 2007d), which is a

meta-modeling technology where meta-models are given as conceptual models.

name
DrawApplication

text
undo

CreationTool

<<open>>
Node

<<open>>
Connection

Valid
Connection

<<abstract>>
Figure
* *

source1

target1

1

name
Menu*

name

<<open>>
Command*

*

Rectangle Ellipse Line... ...

CopyCommand ...

ConnectionToolNodeToolnode

1
connection

Figure 2.5: Domain variability model for JHotDraw (simplified).

In Figure 2.6(a) we can see an object diagram describing an application model

(i.e. instance of the model of Figure 2.5). The object diagram is an abstract

representation of the application model expressed in the F-DSL. It describes an

application named “Sample” that makes use of two node figures, rectangle and

ellipse, and the line connection figure. Each figure has a creation tool for it, and

the creation tool for the ellipse figure has undo support.

28

2.4 DSLs for Instantiating Frameworks

:DrawApplication
name="Sample"

:Rectangle
:Ellipse

:Line

:ValidConnection

:ConnectionTool
text="Line"
undo=false

:NodeTool
text="Rectangle"
undo=false

:NodeTool
text="Ellipse"
undo=true

source
target

(a) Example application model

<drawApplication name="Sample">
 <nodeFigures>
 <rectangle id="fig1"/>
 <ellipse id="fig2"/>
 </nodeFigures>
 <connectionFigures>
 <line id="con1">
 <validConnection source="fig1" target="fig2"/>
 </line>
 </connectionFigures>
 <tools>
 <nodeTool figid="fig1" text="Rectangle" undo="false"/>
 <nodeTool figid="fig2" text="Ellipse" undo="true"/>
 <connectionTool figid="con1" text="Line" undo="false"/>
 </tools>
</drawApplication>

(b) Application model of (a) repre-
sented with XML

Sample

undo true
Property Value•

T

TT

(c) Application model of (a) repre-
sented with a dedicated GUI

Figure 2.6: Different concrete syntax for a same application model.

A F-DSL may have multiple concrete syntaxes. In Figure 2.6 we can see a
same application model represented using two hypothetical representations for
the concrete syntax. In Figure 2.6(b) we have a concrete syntax based on XML,
while in Figure 2.6(c) we have a graphical editor for manipulating the application
models. The definition of a concrete syntax for an F-DSL is a relevant issue,
especially concerning usability. However, the development of concrete syntax
is an orthogonal issue to the abstract syntax and transformation that can be
addressed independently.

Even if the domain associated with the F-DSL is stable, certain solutions nec-
essarily require the existence of open variation points (Gurp et al., 2001). These
are points where it is possible to introduce a variant that cannot be predefined.
For instance, given that the behavior of a JHotDraw command can be almost
anything, it is not reasonable to consider the development of an F-DSL capable
of modeling the behavior of any command. In this case, given that there are infi-

29

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

nite commands that one may define, the variability with respect to a command’s
behavior cannot be anticipated, and therefore, command should be considered an
open variation point.

2.4.3 Transformation definition

Application models described in an F-DSL are transformed to a program written
in a target language. In the context of this dissertation, the target language is
the general purpose object-oriented language in which the framework-based code
is written. The transformation definition is likely to be the most difficult task in
DSL engineering. The problem is that the gap between the F-DSL concepts and
framework-based code may lead to complex transformations.

Figure 2.7 presents the code of the JHotDraw-based application described
by the the application model given in Figure 2.6. The given code is what a
code generator has to output. According to the content of Figure 2.4, notice the
tangling of code pertaining to figures, tools, and undo support.

In principle, the bigger the gap between concepts and framework-based code
is, the more complex the transformation definition. The concepts/code gap varies
according to the framework reuse interface. White-box reuse interfaces usually
have bigger gaps (e.g. due to hook methods), and therefore they imply more
complex transformations. Black-box reuse interfaces usually have a shorter gaps,
given that the framework-based code consists in object instantiation and compo-
sition, resembling concept instances and their relationships more closely. It has
been pointed out by Roberts & Johnson (1997) that black-box frameworks have
an adequate maturity for having an accompanying F-DSL. However, it is impor-
tant to take into account that black-box frameworks are harder to implement,
and that many frameworks never reach this stage.

Although the concepts/code gap may be shorter in black-box frameworks,
both the concepts and their mapping to framework-based code is implicit. There-
fore, the definition of both the concepts and the transformation has to be ex-
plicitly given elsewhere. The definition of concepts was addressed previously.
Concerning the transformation definition, it is typically implemented in a code
generator. Despite the particular technology that is adopted for this purpose,

30

2.4 DSLs for Instantiating Frameworks

pub l i c c l a s s Samp l eApp l i c a t i on extends MDI_DrawApplication {

pub l i c Samp l eApp l i c a t i on () {
super ("Sample") ;

}

pub l i c vo id c r e a t eToo l s (JToolBar bar) {
super . c r e a t eToo l s (bar) ;

Tool t o o l = new Crea t i onToo l (th i s , new Rec t ang l eF i g u r e ()) ;
bar . add (c r ea t eToo lBut ton ("RECT" , " De f au l t Rec tang l e " , t o o l)) ;

t o o l = new UndoableTool (new Crea t i onToo l (th i s , new E l l i p s e F i g u r e ())) ;
bar . add (c r ea t eToo lBut ton ("ELLIPSE" , " De f au l t E l l i p s e " , t o o l)) ;

t o o l = new Connect ionToo l (th i s , new CustomLineConnect ion ()) ;
bar . add (c r ea t eToo lBut ton ("LINE" , " De f au l t L i ne " , t o o l)) ;

}
}

pub l i c c l a s s CustomLineConnect ion extends L ineConnec t i on {
pub l i c boolean canConnect (F i gu r e s r c , F i g u r e t g t) {
re tu rn

s r c i n s t anceo f Rec t ang l eF i g u r e &&
tg t i n s t anceo f E l l i p s e F i g u r e ;

}
}

Figure 2.7: JHotDraw-based code that implements the model of Figure 2.6, and
corresponding screenshot.

31

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

the role of the code generator is to explicitly map concepts to framework-based
code. As explained, depending on the reuse interface of a given framework, the
complexity of the mapping may vary. The more complex the mapping is, the
more difficult the implementation and maintenance of the transformation in a
code generator.

2.4.3.1 Difficulties of generating framework-based code

Although some elements of a reuse interface are likely to have a close relation with
the elements of a domain variability model, the reuse interface can be complex
enough so that the transformation of concepts to code is non-trivial. This is so
due to the following reasons:

• Non-uniform representation of concepts in the reuse interface. Different
domain concepts can be used in an application using different means, such
as subclassing, object parameters, or object composition. This implies that
an application developer has to find out how to instantiate a certain domain
concept by inspecting an heterogeneous reuse interface, in the sense that
the mechanisms used to instantiate the concepts differ from case to case.

• Manipulation of domain-unrelated elements. Application code may need
to include elements that have no correspondence to a domain concept, for
instance the definition of a hook method. Such domain-unrelated elements
introduce accidental complexity in the task of finding out how to instantiate
the concepts.

• Tangled application classes. The code of a framework-based class typically
includes statements pertaining to different concept instances. The genera-
tion of interleaved code that originates from the different concept instances
represented in an application model is an additional burden that has to be
managed.

• Code dependencies. It is typically necessary to have dependencies between
code generated from different concept instances. This issue may cause addi-
tional complexity in the code generator implementation because the gener-

32

2.5 Towards the Proposed Approach

ator parts become interdependent, for instance due to the need of managing
variable names that have to be shared.

Besides these difficulties related with the nature of framework-based code,
other more general difficulties hinder the development of code generators:

• Understandability. Program generation is hard to understand, given that
one has to reason about the generated program indirectly through another
program — i.e. the code generator. This indirection can be a burden for
the one that programs the code generator.

• Consistency and traceability. Code generators produce text that constitutes
a program. Therefore, the generator implementation deals with program
statements that contain identifiers of elements of the reuse interface. These
identifiers are manipulated as strings, which are treated in a non-compilable
way — e.g. a misspelled keyword or method name on these statements
does not indicate a compile error. Therefore, code generators are fragile. A
modification in the reuse interface may cause an unnoticeable error in the
code generator — the code that is being produced becomes incorrect, while
the framework developer does not get any associated error or warning.

• Integration of manual code. Ideally, it is not intended that the application
developer has to manipulate or even understand code that is generated.
Therefore, a proper mechanism to integrate manual code should not re-
quire the application developer to perform any inspection or manipulation
of generated code. One of the difficulties of realizing such mechanisms is
to enable manual application code to access objects that are instantiated
within the generated code.

2.5 Towards the Proposed Approach

This chapter presented an overview of existing framework usage support strate-
gies, comparing them and presenting their limitations. The adoption of F-DSLs
was explained in more detail given that the work in this dissertation concentrates
on improving the way they can be built.

33

2. THE PROBLEM OF SUPPORTING FRAMEWORK USAGE

All the framework usage support strategies covered in Subsection 2.3 have an
essential characteristic in common. The knowledge of how to instantiate a frame-
work — which is presumably mastered by framework developers — is represented
externally to the framework in a dedicated artifact for that purpose (i.e. docu-
mentation, instantiation tool, or DSL). In order to facilitate the usage of existing
frameworks, none of these approaches proposes changes in the way frameworks
themselves are implemented.

As opposed to the described usage support strategies, already more than a
decade ago, Johnson (1997) expressed the wish for improved mechanisms in pro-
gramming languages so that framework-based applications could be expressed
with more conceptual clarity. In this way, the framework would become easier to
use, and application developers would be less dependent on other artifacts, such
as documentation. The approaches that have been proposed since then do not
follow this kind of strategy.

The work in this dissertation goes in the direction of raising the abstraction
level of reuse interfaces, so that external artifacts lose their relevance, or in the
best case, become unnecessary. A higher abstraction level in a reuse interface
enables easier framework instantiation. On the other hand, it is advantageous
when building F-DSLs to have a framework with a higher level reuse interface.
Having a short gap between concepts and code is pointed out by DSL engineering
experts as a means to keep code generators simple, based on their experiences
with several DSL solutions (Pohjonen & Tolvanen, 2002).

The work in this dissertation also proposes to build such higher level reuse
interfaces in order to bridge the gap between concept instances of an application
model and framework-based code.

There are two extreme strategies to bridge the gap, given a set of concepts
and a framework:

1. Lower the abstraction level of concepts. This is referred in Chapter 1
as the implementation-oriented approach, where the F-DSL concepts be-
come closer to implementation elements, implying that they are not purely
domain-related. This option does not explore the full potential of raising
the abstraction level that an F-DSL may offer.

34

2.5 Towards the Proposed Approach

2. Raise the abstraction level of the reuse interface. In opposition to strategy
(1), the concepts remain at the same abstraction level, but the abstraction
level of the reuse interface is raised. This strategy is compatible to what is
referred in Chapter 1 as the domain-oriented approach, given that it allows
F-DSLs to have higher abstraction levels.

It is important to recall that the more domain-oriented the definition of F-DSL
concepts is, the higher the abstraction level of the F-DSL. The work proposed in
this dissertation enables the gab to be bridged following the direction of strategy
(2). Therefore, the approach enables the abstraction level of the reuse interface
to become closer to the domain concepts.

35

Chapter 3

Framework Specialization Aspects

This chapter addresses the concept of framework specialization aspects (or simply,
specialization aspects), and how they can express framework hot spots. Section
3.1 presents an overview of the approach. Section 3.2 explains concepts of aspect-
oriented programming (AOP), namely the subset of primitives that are required
for developing specialization aspects. Section 3.3 details the concept of special-
ization aspects. Section 3.4 explains how framework hot spots can be expressed
with specialization aspects. Section 3.5 summarizes the characteristics which
make specialization aspects a suitable means for developing higher level reuse
interfaces. Finally, Section 3.6 discusses some issues regarding the suitability of
AOP languages for implementing specialization aspects.

3.1 Overview

A framework provides several concepts that can be used in a framework-based
application. Such concepts can be instantiated by adapting the hot spots that
are present in the framework’s reuse interface.

A specialization aspect (SA) is a building block for a new, higher level, reuse
interface that can be built on top of the reuse interface of an existing base frame-
work. The proposed reuse interface is composed of several SAs, which express the
hot spots of the base framework. The hot spots are implicit in conventional reuse
interfaces, and the goal is to make them explicit using SAs. Each SA represents a
concept provided by the framework and it is implemented as an abstract module

37

3. FRAMEWORK SPECIALIZATION ASPECTS

that is part of the new reuse interface. It is intended that SAs can be developed

without modifying the base framework.

The main goal of SAs is to allow framework instantiation at a higher abstrac-

tion level than conventional instantiation. A higher abstraction level enables the

instantiation of domain concepts to be closer to the developer intent. An applica-

tion aspect (AA) is a building block of a framework-based application that adapts

one SA by developing a concrete module that inherits from the SA. While the

SA represents a concept, an inherited AA represents an instance of that concept.

There may exist several AAs inheriting from the same SA, representing thus mul-

tiple instances of the concept within the same application. AAs are composed

only through static references, i.e. an AA is composed with another AA just

by referencing its module. Such static references represent relationships between

concept instances. An AA instantiates a concept cohesively, meaning that the

concept instance is solely implemented by a single AA, while no modification of

other AAs is required. The development of an AA does not require any knowledge

about the internals of the other AAs.

The development of SAs is a responsibility of framework developers (or do-

main engineers), which are supposedly the ones who have better knowledge of

how the base framework should be used. An application developer can then se-

lect SAs according to the specific requirements of the application, and develop

AAs in order to implement a framework-based application. Figure 3.1 depicts

SAs and AAs. An SA is a reusable module provided by the framework, whereas

an AA is a concrete module that inherits from an SA. The higher level reuse

interface is composed of a set of SAs, which form a “wrapper” to the base frame-

work. Given that SAs wrap the base framework, they depend on their classes.

Moreover, SAs may have mutual dependencies since they collaborate with each

others. In addition, SAs may have inheritance relationships. In this way, it is

possible to generalize common behavior among a set of related SAs, avoiding code

duplication, and enabling easier extensibility. A framework-based application is

composed by several AAs with static dependencies between them.

38

3.2 Aspect-Oriented Programming

Base Framework

SA SA

SA

framework development

AA AA AA<<static>> <<static>>

application development

SA

SA

Figure 3.1: Specialization aspects and application aspects.

3.2 Aspect-Oriented Programming

This section presents some basic concepts of AOP (Kiczales et al., 1997) illus-

trated with the AspectJ language (Eclipse Foundation, 2007a). The AOP fea-

tures given here are the ones that are necessary to understand Sections 3.3-3.4.

A reader familiar with AOP and AspectJ may skip this section.

3.2.1 Paradigm

In the context of object-oriented programming, the use of AOP involves a base

program composed by classes, and additional modules that are referred to as

aspects. The purpose of aspects is to modularize what otherwise could not be

modularized just by using classes. Aspects are entities that introduce behavior

in the base program, ideally in an oblivious way (Filman & Friedman, 2004). By

obliviousness it is meant that the base program does not need to be aware of

the existence of the aspects. The process of combining the aspects with the base

program is called weaving.

39

3. FRAMEWORK SPECIALIZATION ASPECTS

What can be modularized in an aspect is commonly referred to as a crosscut-
ting concern, given that the behavior represented in the aspect cuts across the
structure of the base program, i.e. the classes. Typical crosscutting concerns
are related with system infrastructure, as for instance, security, persistence, log-
ging, or distribution. Crosscutting concerns can be characterized as homogeneous
or heterogeneous (Colyer & Clement, 2004). The former are concerns which af-
fect several classes of the base program in the same way, whereas the latter are
concerns which affect several classes in different ways (see Figure 3.2).

Base Program
class class class

(homogeneous concern) (heterogeneous concern)

aspectaspect

Figure 3.2: Weaving of aspects in a base program: homogeneous and heteroge-
neous concerns.

3.2.2 AOP concepts

This subsection overviews the main concepts of AOP and exemplifies how they
are expressed in the AspectJ language.

Join points

A join point is a point in the execution flow of a program that can be unambigu-
ously identified. An aspect is capable of intercepting the execution of the base
program at its join points. Moreover, the context of the execution point can be
accessed, and behavior can be introduced at those points. There are several kinds
of join points. The following list presents the main kinds:

40

3.2 Aspect-Oriented Programming

• Method execution. An aspect intercepts a method execution. The object
where the method is executed, the parameters, and return value, can be
accessed and modified by the aspect.

• Method invocation. Invocations of a certain method can be in several parts
of the program, whereas the method itself is only in one place. This kind
of join point differs from the previous one in the sense that the aspect
intercepts the execution point of the method call. Besides what can be
accessed in a method execution join point, the aspect can additionally access
the context where the method was invoked, i.e. the object that made the
call.

• Object instantiation. An aspect intercepts the creation of objects of a certain
type. As well as in the case of regular methods, the constructor can be
accessed either when it is executed or invoked.

• Attribute access. An aspect intercepts the execution points where the base
program is accessing (reading or modifying) an attribute of an object of a
certain type.

Pointcuts

A pointcut is a specification of a set of join points. Using AspectJ syntax, some
examples of pointcut definitions are given in the following list:

• Capturing the execution of a method with signature void someMethod1():

pointcut execSomeMethod1 () : execution (void someMethod1 ()) ;

• Capturing the execution of a method with signature void someMethod2(Type),
with access to its parameter:

pointcut execSomeMethod2 (Type t) :
execution (void someMethod2 (Type)) && args (t) ;

The primitive args plus the declaration of the parameter (Type t) enables
the parameter to be accessed through the variable t.

41

3. FRAMEWORK SPECIALIZATION ASPECTS

• Capturing the invocation of a method with signature void someMethod1():

pointcut invocat ionSomeMethod1 () : c a l l (void someMethod1 ()) ;

• Capturing the instantiation of objects of type SomeClass:

pointcut newSomeClass () : i n i t i a l i z a t i o n (SomeClass . new ()) ;

• Capturing the read accesses to attribute someAtt of SomeClass:

pointcut readSomeAttr () : get (SomeClass . someAttr) ;

• Capturing the write accesses to attribute someAttr of SomeClass:

pointcut wr i t eSomeAtt r () : set (SomeClass . someAttr) ;

In the case of using abstract aspects, pointcuts can be declared as abstract,
demanding concrete aspects that inherit from that aspect to define the pointcuts.
An example of a declaration of an abstract pointcut is:

abstract pointcut unknownJo inPo ints () ;

Pointcuts can be a defined as an intersection of different pointcuts. For in-
stance, a pointcut may be defined on the execution of someMethod1() of the
owner class SomeClass. This can be done with the target primitive, as shown in
the following example.

pointcut execSomeMethod1onSomeClass () :
execution (void someMethod1 ()) && target (SomeClass) ;

The scope of the classes matched by a pointcut can be constrained to be the
extensions of a certain class. This can be done with the within primitive. The fol-
lowing example shows how to constrain the scope of executions of someMethod1()

to the extensions of AbstractClass.

pointcut execSomeMethod1onAbst rac tC la s sExtens ions () :
with in (Ab s t r a c tC l a s s+) && execution (void someMethod1 ()) ;

42

3.2 Aspect-Oriented Programming

Advices

An advice is the primitive for introducing behavior at a certain pointcut. The
behavior can be introduced before, after, or around the pointcut. Example defi-
nitions of advices are given below, using the example pointcut declarations intro-
duced previously.

The following example shows how to introduce behavior before the pointcut
execSomeMethod1() (given previously).

before () : execSomeMethod1 () {
/∗ do something p r i o r to the method execut ion , e . g . ∗/
System . out . p r i n t l n ("someMethod1 () i s go ing to be execu t ed ") ;

}

The following example shows how to introduce behavior after the pointcut
execSomeMethod2(Type) (given previously), having access to the method param-
eter.

a f t e r (Type ob j) : execSomeMethod2 (Type) && args (ob j) {
/∗ do something wi th ob j a f t e r the method execut ion , e . g . ∗/
System . out . p r i n t l n ("someMethod2 () was execu t ed wi th " + ob j) ;

}

The definition of an advice may have the pointcut definition embedded in it.
The following example defines an advice in that way. Moreover, the example also
shows how to gain access to the object that is returned (after execution).

a f t e r () return ing (Type r e t) : execution (Type someMethod3 ()) {
/∗ do something wi th the re turned o b j e c t (r e t) , e . g . ∗/
System . out . p r i n t l n (r e t) ;

}

An around advice implies that the introduced behavior executes instead of
the behavior at the given pointcut. In around advices it is possible to use the
proceed primitive for defining that the behavior at the pointcut should execute
normally. The example below shows an advice that wraps the invocation of
someMethod3(). It tests some condition, so that if it is true the method executes
normally, otherwise it returns the object wrapped in a TypeProxy object (suppose
this type to be a subtype of Type with a constructor having a parameter of type
Type).

43

3. FRAMEWORK SPECIALIZATION ASPECTS

Type around () : execution (Type someMethod3 ()) {
i f (someCond i t ion ())

return proceed () ; /∗ does not change behav ior ∗/
e l s e

return new TypeProxy (proceed ()) ;
}

Aspects

An aspect is a type of modularization unit that is used in an AOP program, in
addition to classes. An aspect module is declared using the keyword aspect, and
apart from a few details, it may contain everything that a class may have (i.e.
attributes, methods, etc), plus pointcut definitions and advices. The following is
an example aspect where all the parameters that are used in the executions of
someMethod2() are stored in an array. Assume the existence of the type Type.

pub l i c aspect SomeAspect {
pr i va te L i s t <Type> paramsLog ;

pub l i c SomeAspect () {
paramsLog = new Ar r a yL i s t <Type >() ;

}

pr i va te void logParam (Type param) {
paramsLog . add (param) ;

}

pr i va te pointcut execSomeMethod2 (Type t) :
execution (void someMethod2 (Type)) && args (t) ;

a f t e r (Type ob j) : execSomeMethod2 (Type) && args (ob j) {
logParam (ob j) ;

}
}

In AspectJ, aspects may only contain constructors that have no arguments.
The reason is that they are instantiated automatically at the time of the execution
of one of its advices, while the programmer cannot instantiate them manually as

44

3.2 Aspect-Oriented Programming

in the case of classes. An aspect instance is analogous to the instance of a class,
i.e. an object. By default, an aspect is instantiated only once. However, it may
be defined that there should occur one aspect instantiation per advice execution.

Analogously to classes, aspects may inherit from other aspects. An aspect
(subaspect) inherits the advices, methods, and pointcuts, of its superaspect. Both
methods and pointcuts can be overridden in subaspects, if the their visibility
allows. A method in a subaspect can be overriden in the same way as in classes,
and pointcut overriding is analogous.

Aspects may also be abstract, and the keyword abstract is used for that pur-
pose, as in abstract classes. Abstract aspects may contain abstract pointcut
declarations and abstract methods. The aspect shown in the previous example
actuates on every execution of someMethod2(), despite the owner class. The fol-
lowing example presents an abstract aspect that is similar to the one given in the
previous example, but the particular class that owns someMethod2() is left open
to be defined by subaspects. Moreover, the advice only works for extensions of
SomeAbstractClass, due to the use of within(SomeAbstractClass+).

pub l i c abst ract aspect SomeAbstractAspect {
/∗ . . . ∗/
protected abstract pointcut t a r g e t C l a s s () ;

a f t e r (Type ob j) :
with in (SomeAbst rac tC la s s+) && t a r g e t C l a s s () &&
execution (void someMethod2 (Type)) && args (ob j) {

logParam (ob j) ;
}

}

Below we can see an example of a concrete aspect that inherits from SomeAb-

stractAspect. The aspect implies that only the executions of someMethod2() of
SomeClass will be logged. Assume that SomeClass inherits from SomeAbstract-

Class.

pub l i c aspect SomeConcreteAspect extends SomeAbstractAspect {
protected pointcut t a r g e t C l a s s () : target (SomeClass) ;

}

45

3. FRAMEWORK SPECIALIZATION ASPECTS

Precedences

Different aspects may introduce behavior in the base program in the same point-
cuts. In these cases, if the order of advice execution is relevant and cannot be
arbitrary, aspect precedences may be used for determining the execution order of
the advices of different aspects. Precedences can be declared using the following
primitive:

d e c l a r e p r e cedence : AspectB , AspectA ;

The precedence rules vary according to the advice type (i.e. before, after, around),
and are not detailed here. In this example, assuming that AspectA and AspectB
have after advices, the precedence declaration defines that AspectA has the lowest
precedence, and therefore, that its advice will execute first.

3.3 Concept

This section describes the concept of specialization aspects (SAs) and application
aspects (AAs) in terms of general object-oriented and aspect-oriented concepts.

Figure 3.3 presents a conceptual model that describes SAs and AAs. Recall
that an SA represents a concept provided by the framework, while the AAs that
inherit from that SA represent instances of that concept in a framework-based
application. An SA is a module that can be either an abstract class or an abstract
aspect. Although using the term “specialization aspect” for a class may sound
awkward, extensions of that class are indeed intended to implement a single
concern of a framework-based application. If an SA is an abstract class then it
means that the concept that it represents may exist on its own, e.g. the main
class of an application or a component. Otherwise, if the SA is an abstract
aspect, it represents a concept that is part of another concept. With respect to
framework-based applications, each concept instance is represented in one AA,
which inherits from the SA that represents the concept. In case the SA is an
abstract class, the AA is a concrete class, whereas if the SA is an abstract aspect
the AA is concrete aspect.

An SA may have parameters, for which AAs provide parameter values. An
SA may have two kinds of methods. On the one hand, there are hidden methods,

46

3.3 Concept

<<abstract>>
Specialization

Aspect <<abstract>>
Hidden Method

Abstract
Aspect

Abstract
Class

Abstract
Pointcut

Advice

1*

1

<<abstract>>
Application

Aspect

Concrete
Class

Concrete
Aspect

1 1

Pointcut*

1Exposed
Hook Method

*

Method

*

1

Composite
Pointcut

1

1

1

inherits overrides

defines

inherits

match

1..*

fixed

variable

Hook Constructor

Abstract
Collaboration

1

Parameter *

Parameter
Value *

for

1

type

1
super 0..1

Figure 3.3: Conceptual model for specialization aspects and application aspects.

which can be either hook methods or constructor methods. Both actual construc-

tors and methods that create objects are considered to be constructor methods.

These methods are hidden from framework-based applications, while they have to

be visible among the SAs. On the other hand, exposed hook methods are methods

whose behavior is meant to be defined by framework-based applications. Hence,

an AA contains methods that override the exposed hook methods of the SA from

which it inherits.

SAs that are abstract classes can only have parameters and exposed hook

methods, whereas SAs that are abstract aspects can additionally implement ab-

47

3. FRAMEWORK SPECIALIZATION ASPECTS

stract collaborations with other SAs. The idea is an SA to abstractly implement
possible collaborations with other SAs. The collaboration participants are the
AAs that inherit from the SAs. Each abstract collaboration is represented by
an advice and an abstract pointcut. The advice actuates on a composite pointcut
(Hanenberg et al., 2003), which has a fixed part that intercepts a hidden method
of the other SA which the SA collaborates with, and a variable part represented in
the abstract pointcut. The abstract pointcut has an associated type, given as an
SA, that defines that the pointcut should be made concrete by matching an AA
that inherits from that SA. In the composite pointcut, the type of the abstract
pointcut is always equal to the SA that owns the hidden method. The fact that
the composite pointcut is based on an abstract pointcut makes the advice also
abstract. The advice only takes effect if the abstract pointcut is made concrete.

An SA may inherit from another SA (super). In these cases, the sub-SAs
inherit from the super SA the exposed and hidden methods, as well as the abstract
collaborations. Inheritance between SAs is useful for structuring and enabling
easy extensibility.

The AAs that inherit from an abstract class only have to provide the param-
eter values and methods, if any. On the other hand, the AAs that inherit from
an abstract aspect, in addition to parameter values and methods, have to define
one pointcut for each abstract pointcut of the SA. The pointcut has to match an-
other AA with the correct type. The definition of pointcuts makes the abstract
collaborations concrete, given that the variable part becomes bound.

3.4 Capturing Framework Hot Spots

This section explains how framework hot spots can be expressed in SAs. It is
demonstrated how the basic adaptation mechanisms are captured with SAs, and
how such SAs can be implemented in AspectJ.

The different adaptation mechanisms described in Section 2.1 imply that dif-
ferent framework concepts are instantiated in different ways. For instance, a
certain framework concept may be instantiated by extending a class and over-
riding a hook method, while another framework concept may be instantiated by
composing a parameterized object with another object exposed by the framework.

48

3.4 Capturing Framework Hot Spots

In contrast to the conventional adaptation mechanisms, SAs provide a uniform
way of instantiating the concepts provided by the framework.

The following sections address the several framework adaptation mechanisms,
using hot spots of the JHotDraw framework as examples. Throughout the several
figures that illustrate the solutions, framework modules are depicted in gray,
application modules are depicted in white, and stereotyped dependencies between
AAs denote pointcut definitions. The code examples are illustrated with figures
that contain UML class diagrams representing the different layers in the packages:
JHotDraw framework, specialization aspects, and application aspects. When
there is need to disambiguate, the prefix sas is used to refer to a member of the
specialization aspects package, while the prefix jhd is used to refer to a member
of the JHotDraw framework package.

3.4.1 Class inheritance and object parameterization

Inheritance is a common adaptation mechanism in frameworks, and solutions that
apply the Template Method pattern (Gamma et al., 1995) occur very frequently.
These cases require application classes to inherit from a framework class, which
is typically abstract, and to override hook methods.

In JHotDraw, the drawing application is represented by the abstract class
MDI_DrawApplication, which framework-based applications may subclass and
override several hook methods. For the purpose of illustrating specialization as-
pects, consider from now on that those hook methods are createMenus(JMenuBar)

and createTools(JToolBar), for adapting the application menus and creation tools,
respectively.

In order to address the concept of draw application one may provide an SA as
shown in Figure 3.4. The SA is an abstract class that subclasses the framework
classMDI_DrawApplication. However, notice that the two hook methods are over-
ridden (preserving the same behavior as in MDI_DrawApplication) and declared
as final, preventing the subclasses of DrawApplication of overriding them. Given
that the given hook methods pertain to different concepts, menu and creation
tool, they should be handled by different SAs, which are going to complete the
behavior of the hook methods.

49

3. FRAMEWORK SPECIALIZATION ASPECTS

Application

Specialization Aspects

JHotDraw

createMenus(JMenuBar)
createTools(JToolBar)

MDI_DrawApplication

createMenus(JMenuBar)
createTools(JToolBar)

DrawApplication

SampleApplication

pub l i c abst ract c l a s s DrawApp l i ca t i on extends MDI_DrawApplication {
pub l i c DrawApp l i ca t i on (S t r i n g name) {
super (name) ;

}

protected f i n a l void createMenus (JMenuBar mb) {
super . c reateMenus (mb) ;

}

protected f i n a l void c r e a t eToo l s (JToolBar p a l e t t e) {
super . c r e a t eToo l s (p a l e t t e) ;

}
}

pub l i c c l a s s Samp l eApp l i c a t i on extends DrawApp l i ca t i on {
pub l i c Samp l eApp l i c a t i on () {
super ("Sample") ;

}
}

Figure 3.4: Specialization aspect capturing class inheritance.

50

3.4 Capturing Framework Hot Spots

Figure 3.4 also presents the class SampleApplication, which is an AA that only
defines its constructor (as required by the SA). Notice that the class does not de-
fine the hook methods. Given that such hook methods cannot be overridden, they
are no longer in control of the framework-based application. The next subsections
present SAs that that handle the behavior of such hook methods.

The application objects that are handled by AAs may need to be param-
eterized. This can be achieved by having the SAs with a constructor, whose
parameter values are used for instantiating the objects. In turn, the AAs that
inherit from the SA become forced to define a constructor. The body of such a
constructor should be a call to the super constructor with the desired parameter
values, as in the given example. More examples of parameterization are presented
in the following sections.

In terms of the concepts of Figure 3.3, the example in this subsection pre-
sented an SA (DrawApplication) that is an abstract class with one parameter
(name), defining two hidden hook methods (createMenus(..) and createTools(..)).
With respect to the framework-based application, the example presented an AA
(SampleApplication) that is a concrete class that inherits from the SA, providing
the required parameter value (“Sample”).

3.4.2 Hook method overriding

When having adaptation based on inheritance, hook methods are an essential
means to support variation in subclasses. The previous subsection introduced
the SA DrawApplication, which defines a hook method for handling the menus.
In order to explain how SAs can capture hook method overriding, this subsection
presents an SA for handling the behavior of that hook method.

In the JHotDraw framework, a menu is represented by an instance of Com-

mandMenu. Menus can be plugged into a framework-based application by compos-
ing CommandMenu objects in the JMenuBar object exposed by the hook method
createMenus(..), introduced in the previous section.

In order to develop an SA for addressing the concept of menu one has to
implement an abstract collaboration that plugs CommandMenu objects, within
the body of the createMenus(..) of a framework-based application. Such an SA

51

3. FRAMEWORK SPECIALIZATION ASPECTS

Application

Specialization Aspects

JHotDraw

CommandMenu

addCommands(CommandMenu, ...)

<<aspect>>
MenucreateMenus(JMenuBar)

createTools(JToolBar)

DrawApplication

<<aspect>>
SampleMenu

<<create>>

SampleApplication <<application>>

pub l i c abst ract aspect Menu {
pr i va te S t r i n g name ;

pub l i c Menu(S t r i n g name) {
t h i s . name = name ;

}

protected abstract pointcut a p p l i c a t i o n () ;

a f t e r (DrawApp l i c a t i on a p p l i c a t i o n , JMenuBar mb) :
with in (DrawApp l i c a t i on+) && a p p l i c a t i o n () &&
execution (void DrawApp l i ca t i on . createMenus (JMenuBar)) &&
t h i s (a p p l i c a t i o n) && args (mb) {
CommandMenu menu = new CommandMenu(name) ;
mb. add (menu) ;
addCommands (menu , a p p l i c a t i o n) ;

}

void addCommands (CommandMenu menu , DrawApp l i c a t i on a p p p l i c a t i o n) {
}

}

pub l i c aspect SampleMenu extends Menu {
pub l i c SampleMenu () {
super ("SampleMenu") ;

}

protected pointcut a p p l i c a t i o n () : target (Samp l eApp l i c a t i on) ;
}

Figure 3.5: Specialization aspect capturing hook method overriding.

52

3.4 Capturing Framework Hot Spots

has to be an abstract aspect, given that it is necessary to introduce behavior at
another AA.

Figure 3.5 presents an SA Menu for plugging menus into a JHotDraw-based
application, assuming the existence of the SA DrawApplication. The abstract
aspect defines a constructor so that a menu name is passed when instantiating
the aspect. Moreover, it defines an abstract collaboration with DrawApplication.
Such an abstract collaboration is composed of an abstract pointcut application(),
which is to be defined in the AAs that inherit from the SA, and an advice on
a composite pointcut. The composite pointcut intersects the pointcut on the
method DrawApplication.createMenus(JMenuBar) with application(). The figure
shows an example AA, SampleMenu, which defines the pointcut application() on
SampleApplication. Notice that in this solution CommandMenu objects can be
cohesively plugged in the application via an AA, and no modification or inspection
of SampleApplication is required.

Due to the primitive within(DrawApplication+) the advice may only take effect
in the subclasses of DrawApplication. The primitives this(application) and args(mb)

together with the declaration after(DrawApplication application, JMenuBar mb)

enable the aspect to gain access to the instance of DrawApplication where the
method is invoked and the JMenuBar object that is passed to the hook method.
The body of the advice creates a CommandMenu object using the name attribute,
plugs it into the JMenuBar object, and finally, it invokes addCommands(..), which
is a hook method for plugging commands into the menu. An SA that implements
an abstract collaboration involving this hook method is presented later on.

The hook method createMenus(...), which in a conventional reuse interface
would be defined by applications, is no longer visible to application developers.
Finally, the type JMenuBar is no longer relevant to framework-based applications,
and therefore, it is excluded from the new reuse interface based on SAs.

In terms of the concepts of Figure 3.3, the example in this subsection presented
an SA (Menu), which is an abstract aspect with one parameter (name). Such an
abstract aspect defines an abstract collaboration composed of one abstract point-
cut (application()) and advice defined on a composite pointcut that intersects the
abstract pointcut with the execution of the hidden hook method of another SA

53

3. FRAMEWORK SPECIALIZATION ASPECTS

(DrawApplication.createMenus(..)). With respect to the framework-based applica-
tion, the example presented an AA (SampleMenu), which is a concrete aspect that
inherits from the SA that provides the required parameter value (“SampleMenu”)
and a contrete pointcut (application()) that defines the abstract pointcut of the
SA.

3.4.3 Structuring specialization aspects with inheritance

In order to avoid code duplication and to promote extensibility, inheritance may
be used to structure SAs. On the one hand, frameworks may offer an hierarchies
of types whose objects may be plugged into framework-based applications. On
the other hand, SAs may be structured using inheritance due to certain related
objects having a similar way of being plugged into a framework-based application.
In both cases, using inheritance relationships between SAs can be beneficial.

3.4.3.1 Hierarchies of pluggable objects

In the JHotDraw framework there are two framework types, Figure and Connec-

tionFigure, for representing nodes and connections, respectively. The framework
also provides several implementations of these types, which are organized in class
hierarchies.

When using SAs, a suitable solution is to have a hierarchy of SAs, where
the top-most SA implements the abstract collaboration against the framework
types, while several subaspects of it (i.e. other SAs) provide the different imple-
mentations of the framework types. Figure 3.6 illustrates this solution. Figure

is the top-most SA that implements an abstract collaboration with DrawApplica-

tion, which implies the creation of an instance of the figure when an instance of
DrawApplication is created. The AAs extend the SA that implements the desired
figure and define the pointcut on the application where the figure is going to be
included. Figure 3.7 presents the code corresponding to the solution depicted in
the diagram.

In terms of the concepts of Figure 3.3, the given example presents several
SAs that have another SA as its super aspect. However, only the top-most SA

54

3.4 Capturing Framework Hot Spots

Application

Specialization Aspects (sas)

JHotDraw (jhd)

...

<<interface>>
Figure

canConnect(Figure, Figure)
...

<<interface>>
ConnectionFigure

...

<<aspect>>
Figure

...

<<aspect>>
Rectangle

...

<<aspect>>
Ellipse

...

canConnect(Figure, Figure)
...

<<aspect>>
Connection

...
AbstractFigure

...

<<aspect>>
Line

...

...
...

<<aspect>>
Line

<<aspect>>
Ellipse

<<aspect>>
Rectangle

SampleApplication

<<application>> <<application>> <<application>>

...

<<aspect>>
Node

...
DrawApplication

Figure 3.6: Hierarchy of pluggable objects (diagram).

55

3. FRAMEWORK SPECIALIZATION ASPECTS

pub l i c abst ract aspect s a s . F i g u r e extends Ab s t r a c t F i g u r e {
protected abstract pointcut a p p l i c a t i o n () ;

a f t e r () :
with in (DrawApp l i c a t i on+) && execution (∗ . new ()) && a p p l i c a t i o n () { }

}

pub l i c abst ract aspect Node extends s a s . F i gu r e {
// Implementation o f jhd . Figure i n t e r f a c e methods

}

pub l i c abst ract aspect Connect ion
extends s a s . F i gu r e implements Connec t i onF i gu r e {
pub l i c f i n a l boolean canConnect (jhd . F i gu r e s t a r t , j hd . F i gu r e end) {
return f a l s e ;

}
}

pub l i c abst ract aspect A t t r i b u t e F i g u r e extends Node {/∗ . . . ∗/}

pub l i c abst ract aspect Rec tang l e extends A t t r i b u t e F i g u r e {
// implementat ion o f r e c t an g l e s p e c i f i c s

}

pub l i c abst ract aspect E l l i p s e extends A t t r i b u t e F i g u r e {
// implementat ion o f e l l i p s e s p e c i f i c s

}

pub l i c abst ract aspect Po l y L i n eF i g u r e extends Connect ion {/∗ . . . ∗/}

pub l i c abst ract aspect L ine extends Po l y L i n eF i g u r e {
// implementat ion o f l i n e s p e c i f i c s

}

pub l i c aspect Rec tang l e extends s a s . Rec tang l e {
pub l i c pointcut a p p l i c a t i o n () : target (Samp l eApp l i c a t i on) ;

}

pub l i c aspect E l l i p s e extends s a s . E l l i p s e {
pub l i c pointcut a p p l i c a t i o n () : target (Samp l eApp l i c a t i on) ;

}

pub l i c aspect L ine extends s a s . L i n e {
protected pointcut a p p l i c a t i o n () : target (Samp l eApp l i c a t i on) ;

}

Figure 3.7: Hierarchy of pluggable objects (code).

56

3.4 Capturing Framework Hot Spots

implements an abstract collaboration (with DrawApplication) and defines an ab-
stract pointcut, while all the other descendant SAs in the hierarchy inherit such
abstract collaboration and abstract pointcut. With respect to the framework-
based application, the example presents three AAs that inherit from leafs of the
hierarchy of SAs. Although not exemplified here, the application could define its
own figures and connection figures by having AAs that inherit directly from the
SAs Node and Connection, respectively.

3.4.3.2 Generalizing common behavior

In the JHotDraw framework, the way to include a node tools and connection

tools is very similar. In both cases adaptation should take place within the hook
method createTools(..) that was presented earlier. The difference is that they
require the creation of objects of different types. For a node tool a Creation-

Tool object must be created, while for a connection tool a ConnectionTool object
must be created. Moreover, the undo support is achieved in the same way for
both cases. If we would develop two SAs, one for each case, both implementing
an abstract collaboration with DrawApplication for completing the hook method
createTools(..), we would end up having SAs with very similar advices.

If there are SAs whose advices are similar, the commonality may be factored
out to an SA from which the related SAs inherit from. In the given case, since
the difference resides in the object that is created, one may develop an SA with
a hidden hook method responsible for creating such object. Then we can have
two other SAs that inherit from such SA, overriding the hook method according
to the object that has to be created. Figure 3.8 illustrates this solution.

In the given solution we can see the SA CreationTool depending on the SA
DrawApplication, given that it implements an abstract collaboration involving
createTools(..), and depending on the framework type Tool and on the framework
class UndoableTool. This SA has two SAs inheriting from it for addressing the two
kinds of tool. The SA NodeTool depends on the SA Node (given previously) and
on the framework class CreationTool, while the SA ConnectionTool depends on
the SA Connection (given previously) and on the framework class ConnectionTool.

57

3. FRAMEWORK SPECIALIZATION ASPECTS

The code that implements the solution depicted in Figure 3.8 is split into Figures
3.9 and 3.10.

In terms of the concepts of Figure 3.3, the given example presents two related
SAs (NodeTool and ConnectionTool) that inherit from the same SA (CreationTool).
While both SAs inherit the abstract collaboration and abstract pointcut defined in
the super aspect, each one also defines its own abstract collaboration and abstract
pointcut. With respect to the framework-based application, the example presents
three AAs (RectangleTool, EllipseTool, and LineTool) that inherit from leafs of the
hierarchy of SAs.

3.4.4 Object composition and interface implementation

In addition to class inheritance, framework adaptation may rely extensively on
compositions of objects that are instantiated within the code of a framework-
based application. For instance, in the JHotDraw framework one may plug com-
mands into a menu by composing Command objects using the method Command-

Menu.add(Command). Moreover, frameworks may allow framework-based appli-
cations to provide their own components, which have to conform to framework
interfaces. Such components are then plugged in the application through hook
methods and/or object composition.

An SA for supporting the inclusion of menus was given previously. Such an SA
was the abstract aspect Menu, and recall that it defined a hook method addCom-

mands(CommandMenu, DrawApplication) for enabling commands to be added to
the menu. The JHotDraw framework has the interface Command for representing
commands and provides an abstract implementation of a command in the class
AbstractCommand. Such an abstract implementation enables the development of
new commands just by giving the command behavior in the method execute().

This section presents an SA for supporting the inclusion of commands, as-
suming the existence of the SA Menu. The solution is based on having an aspect
that implements an abstract collaboration with the SA Menu for completing the
body of the hook method addCommands(..). Moreover, this section also shows an
example where AAs provide method implementations (the command behavior).

58

3.4 Capturing Framework Hot Spots

Application

Specialization Aspects (sas)

JHotDraw (jhd)

createTool() : Tool

<<aspect>>
CreationTool

createTool() : Tool

<<aspect>>
NodeTool

createTool() : Tool

<<aspect>>
ConnectionTool

...
CreationTool

...

<<interface>>
Tool

...
ConnectionTool

<<aspect>>
Line

<<aspect>>
Rectangle

SampleApplication

<<aspect>>
RectangleTool

<<application>>

<<aspect>>
LineTool

<<application>>

<<node>>

<<connection>>

<<create>> <<create>>

...

<<aspect>>
Connection

createTools(JToolBar)
...

DrawApplication

...

<<aspect>>
Node

...
UndoableTool

<<aspect>>
EllipseTool

<<aspect>>
Ellipse

<<application>>

<<node>>

Figure 3.8: Structuring specialization aspects with inheritance (diagram).

59

3. FRAMEWORK SPECIALIZATION ASPECTS

pub l i c abst ract aspect Crea t i onToo l {
pr i va te S t r i n g i conPath ;
pr i va te S t r i n g t o o lT i p ;
pr i va te boolean undo ;

pub l i c Crea t i onToo l (S t r i n g iconPath , S t r i n g too lT ip , boolean undo) {
t h i s . i conPath = iconPath ;
t h i s . t o o lT i p = too lT i p ;
t h i s . undo = undo ;

}

protected abstract pointcut a p p l i c a t i o n () ;

a f t e r (DrawApp l i c a t i on app , JToolBar t o o l b a r) :
with in (DrawApp l i c a t i on+) && a p p l i c a t i o n () &&
execution (void DrawApp l i ca t i on . c r e a t eToo l s (JToolBar)) &&
t h i s (app) && args (t o o l b a r) {
Tool t o o l = c r e a t eToo l (app) ;
i f (undo)
t o o l = new UndoableTool (t o o l) ;

t o o l b a r . add (app . c r ea t eToo lBu t ton (iconPath , too lT ip , t o o l)) ;
}

protected abstract Tool c r e a t eToo l (DrawApp l i ca t i on a p p l i c a t i o n) ;
}

pub l i c abst ract aspect NodeTool extends s a s . C r ea t i onToo l {
pr i va te F i gu r e f i g u r e ;

pub l i c NodeTool (S t r i n g iconPath , S t r i n g too lT ip , boolean undo) {
super (iconPath , too lT ip , undo) ;

}

protected abstract pointcut node () ;

a f t e r (Node node) :
execution (Node . new ()) && node () && t h i s (node) {

f i g u r e = node ;
}

protected Tool c r e a t eToo l (DrawApp l i ca t i on a p p l i c a t i o n) {
return new j hd . C r ea t i onToo l (a p p l i c a t i o n , f i g u r e) ;

}
}

Figure 3.9: Structuring specialization aspects with inheritance (code, part 1).

60

3.4 Capturing Framework Hot Spots

pub l i c abst ract aspect Connect ionToo l extends s a s . C r ea t i onToo l {
pr i va te Connec t i onF i gu r e f i g u r e ;

pub l i c Connect ionToo l (S t r i n g icon , S t r i n g too lT ip , boolean undo) {
super (i con , too lT ip , undo) ;

}

protected abstract pointcut conne c t i on () ;

a f t e r (Connect ion conne c t i on) :
execution (Connect ion . new ()) && connec t i on () && t h i s (c onne c t i on) {

f i g u r e = connec t i on ;
}

protected Tool c r e a t eToo l (DrawApp l i ca t i on a p p l i c a t i o n) {
return new j hd . Connect ionToo l (a p p l i c a t i o n , f i g u r e) ;

}
}

pub l i c aspect Rec tang l eToo l extends NodeTool {
pub l i c Rec tang l eToo l () {
super ("RECT" , " De f au l t Rec tang l e " , f a l s e) ;

}

protected pointcut a p p l i c a t i o n () : target (Samp l eApp l i c a t i on) ;
protected pointcut node () : target (Rec tang l e) ;

}

pub l i c aspect E l l i p s e T o o l extends NodeTool {
pub l i c E l l i p s e T o o l () {
super ("ELLIPSE" , " De f au l t E l l i p s e " , true) ;

}

protected pointcut a p p l i c a t i o n () : target (Samp l eApp l i c a t i on) ;
protected pointcut node () : target (E l l i p s e) ;

}

pub l i c aspect L ineToo l extends s a s . Connect ionToo l {
pub l i c L ineToo l () {
super ("LINE" , " De f au l t L i n e Tool " , f a l s e) ;

}

protected pointcut a p p l i c a t i o n () : target (Samp l eApp l i c a t i on) ;
protected pointcut connec t i on () : target (L i ne) ;

}

Figure 3.10: Structuring specialization aspects with inheritance (code, part 2).

61

3. FRAMEWORK SPECIALIZATION ASPECTS

The proposed solution is illustrated in Figure 3.11, where we have an SA Com-

mand that depends on the SA Menu, and as an example of an application-specific
command, the AA BlueBackgroundCommand that defines the abstract method
action(..) of the SA.

Application

JHotDraw

execute()
...

<<interface>>
Command

...
AbstractCommand

Specialization Aspects

action(DrawApplication)

<<aspect>>
Command

<<aspect>>
SampleMenu

action(DrawApplication)

<<aspect>>
BlueBackgroundCommand

<<menu>>

addCommands(CommandMenu, ...)

<<aspect>>
Menu

<<create>>

Figure 3.11: Specialization aspect capturing object composition (diagram).

The implementation of the proposed solution is given in Figure 3.12. The ad-
vice plugs an AbstractCommand object into the CommandMenu object captured
in the execution of addCommands(CommandMenu, DrawApplication) of the AA to
be defined by the pointcut menu(). Notice in the SA the existence of the abstract
method action(DrawApplication), which is used to create the AbstractCommand

object. It is the responsibility of the AAs to define that method. As in previous
examples, the SA defines a parameter, which in this case is the name of the com-
mand. With respect to the framework-based application, the implementation of
the AA BlueBackgroundCommand provides the command behavior in the method

62

3.4 Capturing Framework Hot Spots

action(..) and defines the pointcut menu() on the AA SampleMenu (introduced
earlier).

In terms of the concepts of Figure 3.3, the given example presents an SA
that is an abstract aspect, implementing an abstract collaboration with the SA
Menu. Such collaboration relies on the composite pointcut formed by the inter-
section of the pointcut menu() with the execution of the hidden hook method
Menu.addCommands(..). Moreover, the SA defines the abstract method action(..),
which is an exposed hook method. With respect to the framework-based appli-
cation, in addition to the constructor and poincut definition, the AA BlueBack-

groundCommand defines the exposed hook method.

3.4.5 Implementing relationships with specialization aspects

A framework has its domain-specific concepts and relationships. For instance, in
the JHotDraw framework there are the concepts of node figure and connection
figure, where each connection figure may connect valid source-target pairs of node
figures. Therefore, for each valid connection that one wants to define in an appli-
cation, there is a relationship between a connection figure, a source node figure,
and a target node figure. JHotDraw enables the definition of valid connections
by means of overriding the method ConnectionFigure.canConnect(Figure, Figure).
At runtime, when the user is attempting to connect a source and a target figure,
this method is executed to determine if the figures can be connected.

The design solution adopted in JHotDraw forces the definition of valid con-
nection relationships to be tangled with the connection figures’ classes. This
subsection shows how such relationships can be modularized using specialization
aspects. The solution is based on having an SA that defines three abstract col-
laborations. One collaboration is with the SA ConnectionFigure, for defining for
which connection figure is associated to a valid connection. The other two col-
laborations are with the SA Node, for defining the source and the target node
figure that can be connected. The proposed solution is illustrated in Figure 3.13,
where we have an SA ValidConnection depending on the SAs Node and Connection

(given previously). Framework-based applications define each valid connection in
its own AA, as in the example given in the figure, where an AA RectangleToEllipse

63

3. FRAMEWORK SPECIALIZATION ASPECTS

pub l i c abst ract aspect Command {
pr i va te S t r i n g name ;

pub l i c Command(S t r i n g name) {
t h i s . name = name ;

}

protected abstract pointcut menu () ;

pub l i c abst ract void a c t i o n (DrawApp l i ca t i on a p p l i c a t i o n) ;

a f t e r (Menu menu , CommandMenu commandMenu , DrawApp l i c a t i on app) :
with in (Menu+) && menu () &&
execution (void addCommands (CommandMenu , DrawApp l i ca t i on)) &&
t h i s (menu) && args (commandMenu , app) {
f i n a l DrawApp l i ca t i on a p p l i c a t i o n = app ;
AbstractCommand cmd = new AbstractCommand (name , app) {
pub l i c void ex e cu t e () {
a c t i o n (a p p l i c a t i o n) ;

}
} ;

commandMenu . add (cmd) ;
}

}

pub l i c aspect BlueBackgroundCommand extends s a s . Command {
pub l i c BlueBackgroundCommand () {
super (" Co lo r background i n b l u e ") ;

}

protected pointcut menu () : target (SampleMenu) ;

pub l i c void a c t i o n (DrawApp l i ca t i on a p p l i c a t i o n) {
a p p l i c a t i o n . v iew () . se tBackground (Co lo r .BLUE) ;

}
}

Figure 3.12: Specialization aspect capturing object composition (code).

64

3.4 Capturing Framework Hot Spots

defines a valid connection from the rectangle to the ellipse figures, for the line
connection figure.

Specialization Aspects

canConnect(Figure, Figure)
...

<<aspect>>
Connection

Application

<<aspect>>
ValidConnection

<<aspect>>
Line

<<aspect>>
Ellipse

<<aspect>>
Rectangle

<<aspect>>
RectangleToEllipse

<<connection>>
<<target>><<source>>

...

<<aspect>>
Line

...

...

<<aspect>>
Node

Figure 3.13: Specialization aspect capturing a relationship (diagram).

The implementation of the proposed solution is given in Figure 3.14. The ab-
stract aspect ValidConnection defines three abstract collaborations, and therefore,
three abstract pointcuts and three advices. The two first advices are very simi-
lar. They capture the instantiation of AAs that inherit from Node, so that the
figure class of the source and target nodes is stored in the attributes sourceClass
and targetClass, respectively. The third advice completes the body of the hidden
hook method Connection.canConnect(Figure, Figure). The classes of the two figure
objects are checked against the classes stored in the attributes, and if they match
the method returns true. Otherwise, the method execution proceeds, since they
might exist other valid connections that have to be checked. With respect to the
framework-based application, the figure presents an AA RectangleToEllipse that
implements the valid connection by defining the pointcuts on the AAs that are
associated with the figures.

65

3. FRAMEWORK SPECIALIZATION ASPECTS

pub l i c abst ract aspect Va l i dConnec t i on {
pr i va te C l a s s s o u r c eC l a s s ;
pr i va te C l a s s t a r g e t C l a s s ;

protected abstract pointcut connec t i on () ;
protected abstract pointcut s ou r c e () ;
protected abstract pointcut ta rget_ () ;

a f t e r (Node f i g u r e) :
execution (Node . new ()) && sou r c e () && t h i s (f i g u r e) {
s o u r c eC l a s s = f i g u r e . g e tC l a s s () ;

}

a f t e r (Node f i g u r e) :
execution (Node . new ()) && target_ () && t h i s (f i g u r e) {
t a r g e t C l a s s = f i g u r e . g e tC l a s s () ;

}

boolean around (jhd . F i g u r e sou r c eF i g , j hd . F i gu r e t a r g e t F i g) :
with in (Connec t i onF i gu r e+) && connec t i on () &&
execution (boolean Connect ion . canConnect (jhd . F igu re , j hd . F i gu r e)) &&
args (s ou r c eF i g , t a r g e t F i g) {

i f (s o u r c eC l a s s . e q u a l s (s o u r c eF i g . g e tC l a s s ()) &&
t a r g e t C l a s s . e qu a l s ((t a r g e t F i g . g e tC l a s s ())))

return true ;
e l s e
return proceed (s ou r c eF i g , t a r g e t F i g) ;

}
}

pub l i c aspect Re c t a n g l eToE l l i p s e extends Va l i dConnec t i on {
protected pointcut conne c t i on () : target (L i n e) ;
protected pointcut s ou r c e () : target (Rec tang l e) ;
protected pointcut ta rget_ () : target (E l l i p s e) ;

}

Figure 3.14: Specialization aspect capturing a relationship (code).

66

3.4 Capturing Framework Hot Spots

The given mechanism enables the encapsulation of relationships without know-

ing where and how the involved objects are instantiated. When using conventional

adaptation this kind of encapsulation would not be possible. Notice that such

compositions are an increment that does not modify or require the inspection of

other AAs.

In terms of the concepts of Figure 3.3, the given example presents an SA that

is an abstract aspect, implementing abstract collaborations with the SAs Node

and Connection. The collaboration with Connection is implemented in a similar

way to other examples introduced earlier. The other two collaborations differ in

the fact that they rely on capturing the execution of a hidden constructor method

(the constructor of Node).

3.4.6 Ordering of application aspects

When having several AAs that inherit from the same SA, and whose pointcuts

definitions are matching the same modules, the advices are interfering in common

pointcuts. In these cases, it might be necessary for an application to define aspect

precedences to determine in which order the advices are applied. For instance,

the order of the creation tools in the toolbar of a JHotDraw-based application

is determined by the order by which the creation tools are composed within the

associated hook method. When using the SAs, one could define the following

order (1) rectangle tool, (2) ellipse tool, and (3) line tool, by defining the aspect

given in Figure 3.15. The AA RectangleTool has the highest precedence and the

AA LineTool has the lowest. The aspects with higher precedence are weaved first

in the case of after advices, and therefore, we would achieve the intended order.

pub l i c aspect ToolOrder {
d e c l a r e p r e cedence : L ineToo l , E l l i p s eTo o l , Rec tang l eToo l ;

}

Figure 3.15: Aspect for defining the order of application aspects.

67

3. FRAMEWORK SPECIALIZATION ASPECTS

3.5 Benefits

This section summarizes the benefits of expressing framework hot spots by means
of SAs. Such benefits are related with having reuse interfaces that can be used
at a higher abstraction level than conventional ones. The following advantages,
illustrated by the examples of Section 3.4, justify this claim.

• Modular and uniform reuse interface. Framework hot spots are represented
explicitly and uniformly in SAs, having a one-to-one mapping between SAs
an concepts provided by the framework.

• Modular framework-based applications. Framework-based applications can
be developed in an incremental way. Each AA is an increment that does
not require modifications or inspection of other AAs. Object compositions
and relationships can also be encapsulated as AAs.

• Less hook methods. Framework-based applications can be developed with-
out dealing with as many hook methods as in conventional solutions. This
contributes to have a narrow inheritance interface, a principle that states
that only a few hook methods should be required to be given per each
application class (Weinand et al., 1989).

• Less application-relevant methods. Framework-based applications can be
built using less framework methods than in conventional solutions. This
may imply that whole framework classes/interfaces will become irrelevant
to applications.

3.6 Discussion

Frameworks tend to evolve from white-box to black-box (Roberts & Johnson,
1997). By developing a reuse interface based on SAs, the framework evolves in
this direction, too. However, SAs enable more high-level framework usage than
the reuse interface of a conventional black-box framework, given the benefits
explained in Section 3.5.

68

3.6 Discussion

The proposed concept of SA only requires a relatively small subset of the AOP
primitives that a language such as AspectJ offers. These are abstract aspects,
abstract pointcuts, and method join points. Most of the primitives offered by
AspectJ are not necessary.

AspectJ was found suitable for developing SAs for Java frameworks. However,
its primitives are not particularly “tuned” for this purpose, and thus the advice
definitions may seem inelegant. Although dedicated language primitives could
be developed for the specific purpose of SAs, they were found non-essential given
that they would only enable to have more elegant code.

Besides technical issues regarding the chosen AOP language, SAs may be hard
to develop due to their unconventional design nature. Chapter 4 presents a pat-
tern language composed of several design patterns that aid on the development
of SAs. A concrete running example is also used throughout the pattern descrip-
tions in order to illustrate how a conventional reuse interface can be enhanced
with SAs.

69

Chapter 4

Patterns for Framework
Specialization Aspects

The concept of framework specialization aspects was addressed in Chapter 3.
This chapter presents design patterns for assisting domain engineers in the devel-
opment of framework specialization aspects. The design patterns are presented as
a pattern language (Alexander et al., 1977) referred to as Modular Hot Spots.
The patterns of the language can be used together to develop specialization as-
pects for an existing framework.

Section 4.1 introduces a toy framework that is used as a running example for
illustrating the patterns. Section 4.2 presents an overview of the pattern language.
Section 4.3 presents an AspectJ idiom that is used in the implementation of
the patterns. Sections 4.4-4.9 present the patterns that constitute the pattern
language. Section 4.10 revisits the example framework taking into account the
new reuse interface that resulted from all the examples given throughout the
patterns. Finally, Section 4.11 discusses the usefulness of the patterns for building
F-DSLs.

4.1 Example Framework

This section introduces a simple example of a framework, which can be used to
build GUI applications. A GUI application has actions that can be triggered by
the UI elements. The action can be either application-specific or provided by

71

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

the framework. An application may have menus, which may contain submenus.
The menus may contain either items that trigger application actions or other
menus (i.e. the submenus). Implementation-wise there is no distinction between
a menu and a submenu (i.e. they are represented by the same class). Figure
4.1 presents an UML class diagram describing the framework’s reuse interface,
showing the elements that an application developer needs to deal with in order
to build an application. Below we present Java code that implements an example
framework-based application using the conventional reuse interface.

createActions(ActionBar)
createMenus(MenuBar)
...

<<abstract>>
AbstractApplication

add(IMenu) : void
MenuBar

addAction(IAction)
addSubMenu(IMenu)

MenuImpl

register(IAction) : void
ActionBar

run() : void
ExitAction

run() : void

<<interface>>
IAction

...

addAction(IAction)
addSubMenu(IMenu)

<<interface>>
IMenu

Figure 4.1: Reuse interface of the example framework.

pub l i c c l a s s Examp l eApp l i c a t i on extends Ab s t r a c tApp l i c a t i o n {
pr i va te I A c t i o n myact ion , e x i t a c t i o n ;

protected void c r e a t eA c t i o n s (Act ionBar a_bar) {
myact ion = new ExampleAct ion () ;
a_bar . r e g i s t e r (myact ion) ;
e x i t a c t i o n = new Ex i tA c t i o n () ;
a_bar . r e g i s t e r (e x i t a c t i o n) ;

}

protected void createMenus (MenuBar m_bar) {
IMenu menu1 = new MenuImpl ("Menu1") ;
menu1 . addAct ion (e x i t a c t i o n) ;
IMenu menu2 = new MenuImpl ("Menu2") ;
menu2 . addAct ion (myact ion) ;
menu1 . addSubMenu (menu2) ;
m_bar . add (menu1) ;

}
}

72

4.1 Example Framework

pub l i c c l a s s ExampleAct ion implements I A c t i o n {
void run () {

// do something
}

}

The main class is a subclass of AbstractApplication. Application developers
must be aware that createActions() is executed before createMenus(). The sample
framework-based application has two actions, an application-specific one, Exam-
pleAction, and the framework-provided ExitAction. It has a “Menu1”, which has
the exit action and a submenu “Menu2” that has the application-specific action.

Usage scenarios

The following list presents a set of scenarios where application developers may
be faced with difficulties. Each of the scenarios is associated with a goal.

• Scenario 1, plugging menus. The application concept menu is represented
directly by the interface IMenu, which MenuImpl implements. Therefore, it
should be easy for an application developer to locate it. However, once the
interface/class is known, it is necessary to find out how to plug the menu
into the application. Given that the application concept is represented ab-
stractly by the AbstractApplication class, one would go to inspect that class,
and then realize that there is a hook method for the intended purpose (i.e.
createMenus(...)). Plugging in the menu involves modifying the method
body, which may have existing statements. Therefore, in order to imple-
ment the goal of plugging a menu, one has to “interfere” with statements
pertaining to other goals (i.e. other menus and their contents).

• Scenario 2, menu context. The application concept menu can be used in
two different contexts, either as an application menu or as submenu of an-
other menu. As explained in Scenario 1, by knowing IMenu and MenuImpl
one does not know where and how the menus can be plugged. If one has an
existing application menu m1 and wants that menu to become a submenu

73

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

of another menu m2, besides needing to understand the subclass of Abstrac-
tApplication (Scenario 1) to remove the statement that plugs in the menu,
there is need to locate where m2 is instantiated and to know its interface
to add m1 to it. Therefore, changing the context of an existing menu re-
quires changes both in statements pertaining to the original context and in
statements pertaining to the new context.

• Scenario 3, associating actions. The application concept action is repre-
sented by the interface IAction. Actions may be associated to menus. Sup-
pose that there is an existing application with an action a and a menu m,
and that one wants to associate a with m. In order to do so, one has to
inspect the hook method createActions() of the subclass of AbstractApplica-
tion to find out the instance of a, and then, to modify the hook method
createMenus() by finding the instance of m and adding a statement that as-
sociates a to it. Therefore, an association between two application elements
involves two parts of a module (the subclass of AbstractApplication) which
is not directly related to those elements.

Each of the given scenarios can be improved by applying the Modular Hot

Spots pattern language. When addressing a scenario by applying a pattern, it
might happen that a new problem arises. In such cases, there are other patterns
for overcoming these problems.

4.2 Pattern Language Overview

Figure 4.2 gives an overview of Modular Hot Spots. The diagram contains
related patterns and idioms represented in white, while the actual patterns/id-
ioms of the language are represented in gray. Design patterns are represented as
ellipses, whereas AspectJ idioms are represented as circles.

Hot spots based on Template Method (Gamma et al., 1995) are typical
starting points for applying the pattern language. It is common that an appli-
cation framework applies at least one Template Method on the main class
that initializes the application. A Template Method has one or more hook

74

4.2 Pattern Language Overview

 Association
Object

Self-Pluggable
Object

Self-Pluggable
Type

Hierarchy

Composition
Hook Method

has

organized in

participant in

completed by

may have

Template
Pointcut

Idiom

implemented

implemented

Abstract
Self-Pluggable

Object

based on

applies

Composite
Pointcut

Idiom

Abstract
Pointcut

Idiom

applies

applies

Template
Advice
Idiom

implemented

Template
Method

Factory
Method

Multi-Context
Self-Pluggable

Object

is a
plugs in

has

alternative

Figure 4.2: Modular Hot Spots pattern language.

methods, which have to be overridden by application developers. A Composi-

tion Hook Method (Section 4.4) is a hook method that exposes an object

instantiated by the framework as a parameter, with the purpose of enabling ap-

plications to plug objects in the exposed object. While this pattern is not related

with the development of Modular Hot Spots directly, it describes a common

solution that hints where it is suitable to have a Self-Pluggable Object (Sec-

tion 4.5). As we will see, Composition Hook Methods are “predictable” and

can be completed by a Self-Pluggable Object, after which the application

developer no longer has to deal with those hook methods.

A Self-Pluggable Object is a hot spot that enables its adaptations to

localize both the creation of an object representing an application element and

its composition with another application element. It may be plugged into an-

other Self-Pluggable Object, it may have Composition Hook Methods

itself, and it can be implemented using a Template Pointcut (Section 4.3).

A Template Pointcut is an AspectJ idiom that combines the idioms Ab-

75

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

stract Pointcut and Composite Pointcut (Hanenberg et al., 2003). The
Self-Pluggable Object pattern is suitable for improving the plugging menus
scenario described in Section 4.1.

A Multi-Context Self-Pluggable Object (Section 4.6) is a special
kind of Self-Pluggable Object that is suitable in cases when the object can
be plugged in different application contexts (elements). The Multi-Context

Self-Pluggable Object pattern is suitable for improving the menu context
scenario described in Section 4.1.

An Abstract Self-Pluggable Object (Section 4.7) is a module suitable
for structuring a set of related Self-Pluggable Objects, so that the behav-
ior that plugs in those objects can be reused. It applies Factory Method

(Gamma et al., 1995) and can be implemented using the Template Advice

idiom (Hanenberg et al., 2003).
A Self-Pluggable Type Hierarchy (Section 4.8) is an alternative solu-

tion to structure a set of related Self-Pluggable Objects, which merges the
implementation of types and the plugging of objects in the applications.

The patterns Abstract Self-Pluggable Object and Self-Pluggable

Type Hierarchy are two alternatives that are suitable for solving a design
problem that can emerge from applying either Self-Pluggable Object or
Multi-Context Self-Pluggable Object.

Finally, an Association Object (Section 4.9) enables associations between
Self-Pluggable Objects to be defined. This pattern is suitable for improving
the associating actions scenario.

The examples of applying the patterns are given in Java, using AspectJ as
the AOP language. Although the patterns were only experienced in AspectJ,
they are not necessarily specific to it. An AOP language for a base object-
oriented language, that features method execution pointcuts, abstract aspects,
and abstract pointcuts, should be suitable for implementing the patterns. For
instance, the patterns should be applicable to AspectC++ (Spinczyk et al., 2002),
which is the AspectJ counterpart for C++.

In the figures that illustrate the solutions, the framework modules are always
represented in gray, whereas the white classes represent application modules. As-
pects are depicted with a class with stereotype�aspect�. Pointcuts and advices

76

4.2 Pattern Language Overview

are represented in the method’s placeholder using the stereotypes �pointcut�
and�advice�, accordingly. Stereotyped dependencies represent pointcut defini-

tions, where the stereotype name represents the pointcut name.

Each pattern is identified by a name, which relates to the solution that the

pattern proposes. The pattern descriptions are composed of the following sec-

tions:

• Name. A name that relates to the solution of the pattern.

• Context. This subsection locates the pattern in the context of other pat-

terns, and describes the situation where the pattern is applicable.

• Problem. This subsection explicitly indicates the problem that the pattern

is addressing by means of a question.

• Forces. This subsection contains a list of issues that discuss trade-offs and

hypothetical benefits that lead to the proposed solution.

• Solution. This subsection describes the proposed solution, illustrated with

a figure.

• Example. This subsection gives an example of an instance of the pattern

by presenting code for the example framework.

• Resulting context. This subsection describes what is implied after applying

the proposed solution.

• Known uses. This subsection gives examples where this pattern occurs,

namely by referring to hot spots of the frameworks JHotDraw (SourceForge,

2006) and Eclipse RCP (McAffer & Lemieux, 2005).

• Related patterns. This subsection relates the pattern with the other pat-

terns, describing possible combinations or alternatives.

77

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

4.3 Template Pointcut: an AspectJ Idiom

This section presents an AspectJ idiom referred to as Template Pointcut.
Its name results from an analogy with the Template Method pattern. In
a Template Method we have a partially implemented method which uses
abstract methods that are given by subclasses. In the case of a Template

Pointcut, we have a partially defined pointcut within an aspect module that
uses abstract pointcuts that are given by the subaspects.

Context

An aspect module transforms (by weaving) other modules, which can be either
classes or other aspect modules. A reusable abstract aspect is a module from
which other aspects inherit (the subaspects), reusing its implementation. The
scope of applicability of a reusable aspect may be restricted to a certain kind
of base modules. The advantage of doing so is that the reusable aspect may
assume certain characteristics of the modules which are going to be transformed.
For instance, the reusable aspect may be applicable to all subclasses of a certain
class, and therefore, the common inherited methods may be safely used by the
aspect.

Problem

How to implement a reusable abstract aspect so that its advice can only take
effect in a partially defined set of join points, while being able to generalize the
commonalities between those join points?

Forces

• The information factored out to the reusable aspect should be maximized.

• The more “black-box” the reusable aspect is, the better.

• The simpler the pointcut definitions in the subaspects are, the better.

78

4.3 Template Pointcut: an AspectJ Idiom

• The less one needs to know about the modules that an aspect transforms,
the better.

Solution

Implement an abstract aspect containing a Composite Pointcut (the tem-
plate) that is defined as the intersection of certain join points with another
Abstract Pointcut (the hook). The advice takes effect on the Template

Pointcut (Figure 4.3). Subaspects of the abstract aspect have to define the
hook pointcut.

<<pointcut>> template() : ... && hook()
<<pointcut>> hook() : ...
<<advice>> template()

<<aspect, abstract>>
AbstractAspect

ConcreteAspect
<<hook>>

...

Figure 4.3: Template Pointcut idiom.

Example

Consider a reusable aspect that can be used to transform classes that inherit from
the following abstract class.

pub l i c abst ract c l a s s Ab s t r a c tC l a s s {
/∗ . . . ∗/
pub l i c S t r i n g method () ;

}

The following is a reusable aspect with a Template Pointcut defined as the in-
tersection between the execution of method() within subclasses of AbstractAspect
and a hook class, which is to be given by the abstract pointcut hook(). The
definition of hook() is intended to match a particular subclass of AbstractAspect,
which the aspect will transform.

pub l i c abst ract aspect Abs t r a c tAspec t {
pr i va te pointcut t emp la t e () :

79

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

with in (Ab s t r a c tC l a s s+) && hook () && execution (S t r i n g method ()) ;

protected abstract pointcut hook () ;

a f t e r () return ing (S t r i n g s) : t emp la t e () {
/∗ do something , e . g . ∗/
System . out . p r i n t l n (s) ;

}
}

Although the pointcut template() is declared separately, it could be incorporated
directly in the advice. Assuming the existence of a subclass of AbstractClass
named SomeClass, the code below shows how the aspect could be used for acti-
vating the transformation of SomeClass.

pub l i c aspect Conc re teAspec t extends Abs t r a c tAspec t {
protected pointcut hook () : target (SomeClass) ;

}

4.4 Composition Hook Method

Context

Template Method is an elementary and common pattern for enabling frame-
work specialization, where adaptation is achieved by subclassing. The role of
the hook methods that have to be overridden is often to plug objects into the
application.

Problem

How to define hook methods for the purpose of enabling object plugging, so that
they are intuitive to use?

Forces

• Reuse interfaces should be as simple as possible. By reading a hook method
signature, it should be intuitive what the method has to do and how.

80

4.4 Composition Hook Method

• The fewer framework methods one has to know for building an application,
the better.

Solution

Define hook methods that expose in their parameters objects that are instanti-
ated by the framework. These exposed objects are accessed by applications for
composing other objects. The intent of a Composition Hook Method (Figure
4.4) is intuitively given by the method signature, while the way to plug objects
into the exposed object is given by its interface.

compositionHookMethod(Obj)
templateMethod()

-object : Obj

<<abstract>>
AbstractClass

compositionHookMethod(Obj)

ConcreteClass

// ...
object = new Obj();
compositionHookMethod(object);
// ...

compositionHookMethod(Obj o) {
 o.add(new OtherObj());
 // ...
}

Figure 4.4: Composition Hook Method pattern.

Example

Considering the example framework, the abstract class AbstractApplication could
be something like shown below. The class constructor is the template method,
and there are two Composition Hook Methods for plugging in actions and
menus.

pub l i c abst ract c l a s s Ab s t r a c tApp l i c a t i o n {
pr i va te Act ionBar a_bar ;
pr i va te MenuBar m_bar ;

protected Ab s t r a c tApp l i c a t i o n () {
a_bar = new Act ionBar () ;
c r e a t eA c t i o n s (a_bar) ;
m_bar = new MenuBar () ;
c reateMenus (m_bar) ;

}

81

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

protected abstract void c r e a t eA c t i o n s (Act ionBar a_bar) ;
protected abstract void createMenus (MenuBar m_bar) ;

/∗ . . . ∗/
}

Resulting Context

• There is no need for additional methods whose purpose is to compose the
object, which are done through the interface of the exposed objects.

• The way how to use hook methods is intuitive by reading their signature.

Known Uses

The main class of a JHotDraw-based application has to override Composition

Hook Methods for plugging in menus and the tools that create the figures.
A viewpart of an application based on Eclipse RCP has a Composition Hook

Method for plugging GUI elements.

Related Patterns

The reader may indeed find a Template Method and this pattern very alike.
However, the purpose of a Template Method is more generic, and the hook
methods may have purposes other than enabling object composition.

By overriding a Composition Hook Method the variation is achieved
through the exposed object. The type of objects that can be composed in the ex-
posed objects is known, and there are methods in the objects’ interface specifically
for that purpose. Therefore, the body of an overridden Composition Hook

Method is predictable with regard to the method invocations on the exposed
object. For instance, the only purpose of the exposed object of type ActionBar
in the given example is to perform register() calls with objects of type Action as
arguments. All the implementations of this Composition Hook Method will
be similar across framework-based applications.

82

4.5 Self-Pluggable Object

A Composition Hook Method may become hidden from application de-
velopers, so that they will not need to deal with it when building an application.
In order to do so, a Self-Pluggable Object is capable of dismissing the need
of overriding the Composition Hook Method.

4.5 Self-Pluggable Object

Context

Framework classes have Composition Hook Methods.

Problem

How to eliminate the need for application developers to override a Composition

Hook Method when implementing an application?

Forces

• Usually the type of the objects we want to plug in is easy to find. Finding
the way to plug in the objects is the most difficult part, since the framework
user has to understand the interface of the object where plugging takes
place.

• The fewer hook methods application developers have to know and override,
the better.

• The lack of documentation may cause application developers to plug objects
in the wrong locations, resulting in incorrect uses of the framework.

Solution

Develop an abstract aspect that encapsulates the behavior that creates and plugs
the object within a Composition Hook Method. Use a Template Point-

cut where the fixed part defines the Composition Hook Method and the
variable part (hook) is intended to match a subclass of the template class that

83

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

owns that method. Application developers use a Self-Pluggable Object

(Figure 4.5) by extending the aspect and defining the hook pointcut on the de-
sired context.

<<pointcut>> context() : AbstractContext
<<advice>> AbstractContext.hookMethod() && context()

<<aspect, abstract>>
SelfPluggableObject

<<aspect>>
Object

~ <<final>> hookMethod()

<<class/aspect, abstract>>
AbstractContext

<<class/aspect>>
Context

<<context>>

Figure 4.5: Self-Pluggable Object pattern.

Example

This pattern is illustrated by presenting a solution for improving the plugging
menus scenario given in Section 4.1. The Composition Hook Method is Ab-
stractApplication.createMenus(). Since this method will not need to be overridden
by applications, it may have reduced visibility and be locked for overriding, as
shown below.

pub l i c abst ract c l a s s Ab s t r a c tApp l i c a t i o n {
/∗ . . . ∗/
f i n a l void createMenus (MenuBar m_bar) { }

}

The following is a reusable aspect for plugging menus. The menu name is given
in the constructor, while the menu is created by createMenu() using that name.
The hook pointcut is application(). The advice creates the menu and plugs it into
the MenuBar object parameter of createMenus(..). Using an independent method
for creating the menu facilitates the collaboration with other aspects.

pub l i c abst ract aspect Menu {
pr i va te S t r i n g name ;

pub l i c Menu(S t r i n g name) {
t h i s . name = name ;

}

84

4.5 Self-Pluggable Object

protected abstract pointcut a p p l i c a t i o n () ;

a f t e r (MenuBar mb) :
with in (Ab s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&
execution (void createMenus (MenuBar)) && args (mb) {

mb. add (createMenu ()) ;
}

IMenu createMenu () {
return new MenuImpl (name) ;

}
}

The main class of an application (subclass of AbstractApplication) does not need
to override createMenu(..). ExampleApplication would be given like shown below.

pub l i c c l a s s Examp l eApp l i c a t i on extends Ab s t r a c tApp l i c a t i o n {

}

In order to plug in a menu, a subaspect of Menu has to be defined. The following
is an example of how to plug in a menu (“Menu1”) in ExampleApplication.

pub l i c aspect Menu1 extends Menu {
pub l i c Menu1 () {

super ("Menu1") ;
}

protected pointcut a p p l i c a t i o n () : target (Examp l eApp l i c a t i on) ;
}

In case the order of multiple Self-Pluggable Objects of the same type
is relevant, precedences have to be used to explicitly declare the order in which
the several objects are plugged in. The following example shows how it could be
declared that Menu1 is to be plugged in before MenuX.

pub l i c aspect MenuOrder {
d e c l a r e p r e cedence : MenuX , Menu1 ;

}

85

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

The precedence declaration may be given in an independent module as shown,
but it can also be given together with the other modules.

Resulting Context

• Application developers no longer have to deal with the Composition

Hook Method. Instead, they implement an independent aspect, which
defines the hook pointcut.

• Objects can be plugged into other objects incrementally, without the need
to modify, inspect, or understand, code related to the object where compo-
sition takes place.

• Changing the context where the object is composed can be done only by
changing the hook pointcut definition.

• Framework-based applications are adaptable without the need of under-
standing or modifying source code. Removing a Self-Pluggable Ob-

ject can simply be done by recompiling the application without its module
(e.g. deactivating Menu1 as a compilation unit).

Known Uses

Self-Pluggable Objects in JHotDraw can plug menus, tools, and undo on
tools. Self-Pluggable Objects in Eclipse RCP can plug the toolbar, per-
spectives, and viewparts (an application can have several viewparts, which are
organized in different perspectives).

Related Patterns

A Self-Pluggable Object can be plugged inro another Self-Pluggable

Object. This can be done by intercepting the creation of objects in order to
plug other objects into them, or by completing Composition Hook Methods,
which Self-Pluggable Objects may have. A Self-Pluggable Object

may be a Multi-Context Self-Pluggable Object if the object can be
plugged into different application contexts. A Self-Pluggable Object may

86

4.6 Multi-Context Self-Pluggable Object

be based on an Abstract Self-Pluggable Object if there are multiple sub-
types of the pluggable object. A Self-Pluggable Type Hierarchy merges
the type implementations with their abstract composition (i.e. plugging). An
Association Object enables the establishment of associations between Self-

Pluggable Objects.

4.6 Multi-Context Self-Pluggable Object

Context

A Self-Pluggable Object is an object that plugs itself in a certain appli-
cation context. However, there are objects which can be plugged into different
application contexts.

Problem

How to develop a Self-Pluggable Object that can be plugged into more
than one application context?

Forces

• It is appealing to have everything that is possible to do with an object
represented in a single module. By knowing that module, an application
developer knows all that can be done with the object.

• If we would have a Self-Pluggable Object for each application context,
there would be multiple modules for addressing a single concept.

Solution

Develop an aspect similar to a Self-Pluggable Object, which has one advice
for each Composition Hook Method related with an application context. The
hook pointcut is used in the different advices. When using the Multi-Context

Self-Pluggable Object (Figure 4.6), the context is given by the module that

87

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

is matched by the hook pointcut, implying that only the advice related to that
application context will take effect.

<<pointcut>> context() : AbstractContext1 || AbstractContext2
<<advice>> AbstractContext1.hookMethod1() && context()
<<advice>> AbstractContext2.hookMethod2() && context()

<<aspect, abstract>>
MultiContextSelfPluggableObject

<<aspect>>
ObjectOnContext2

~ <<final>> hookMethod2()

<<class/aspect, abstract>>
AbstractContext2

<<class/aspect>>
Context2

~ <<final>> hookMethod1()

<<class/aspect, abstract>>
AbstractContext1

<<aspect>>
ObjectOnContext1

<<class/aspect>>
Context1

<<context>><<context>>

Figure 4.6: Multi-Context Self-Pluggable Object pattern.

Example

This pattern is illustrated by evolving the previous example, while addressing
the improvement of the menu context scenario given in Section 4.1. Besides the
application, a (sub-)menu can also be composed in another menu. Therefore, a
menu can be used in more than one application context. The following is a new
version of Menu, containing two advices. The first is like in the previous example,
while the second is for addressing the composition of menus and sub-menus.

pub l i c abst ract aspect Menu {

/∗ to match an ex t ens i on o f e i t h e r Abs t rac tApp l i ca t i on or Menu ∗/
protected pointcut con t e x t () ;

a f t e r (MenuBar mb) :
with in (Ab s t r a c tApp l i c a t i o n +) && con t e x t () &&
execution (void createMenus (MenuBar)) && args (mb) {

mb. add (createMenu ()) ;
}

a f t e r () return ing (IMenu m) :
with in (Menu+) && con t e x t () &&
execution (IMenu createMenu ()) {

m. addSubMenu (createMenu ()) ;

88

4.6 Multi-Context Self-Pluggable Object

}
/∗ . . . ∗/

}

The following module would plug the menu “Menu1” in ExampleApplication (very
similar to the example given previously).

pub l i c aspect Menu1 extends Menu {
pub l i c Menu1 () {

super ("Menu1") ;
}

protected pointcut con t e x t () : target (Examp l eApp l i c a t i on) ;
}

The following module would plug the menu “Menu2” in the “Menu1”.

pub l i c aspect Menu2 extends Menu {
pub l i c Menu2 () {

super ("Menu2") ;
}

protected pointcut con t e x t () : target (Menu1) ;
}

Resulting Context

• Everything that can be done in an application with an object is achieved
through the same module.

• Changing the context where the object is composed, including different
context types, can be done just by changing the hook pointcut definition in
the object’s module.

Known Uses

A Multi-Context Self-Pluggable Object in Eclipse RCP can plugmenus,
whose context may be (a) the application menu bar (conventional menu), (b) a
certain viewpart (only shown in there), and (c) a certain viewer (appears as a
pop-up menu).

89

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

Related Patterns

A Multi-Context Self-Pluggable Object is a special kind of Self-Pluggable

Object.

4.7 Abstract Self-Pluggable Object

Context

Objects are plugged using Self-Pluggable Objects. A common case in
frameworks is that objects of a certain type (e.g. represented by an interface)
may be plugged in an application, and therefore, several subtypes of that type
can be plugged in the same way.

Problem

When having a hierarchy of types whose objects can be plugged in an application,
if we would have a Self-Pluggable Object for each one, there would exist
duplicated code, given that all the objects are plugged in the same way. How
to generalize the common behavior that is necessary to plug objects of a certain
type?

Forces

• Code reuse should be maximized.

• A Self-Pluggable Type Hierarchy is also suitable to structure Self-

Pluggable Objects, but this option is not always viable.

Solution

Develop an aspect similar to a Self-Pluggable Object, but with a Tem-

plate Advice where the creation of the object to be plugged is done by a Fac-

tory Method (abstract method). This Abstract Self-Pluggable Object

(Figure 4.7) should not be visible to applications. Develop one abstract aspect

90

4.7 Abstract Self-Pluggable Object

inheriting from it for each type to be plugged, where the implementation of the
Factory Method returns the proper object. If application-specific objects of
that type are allowed to be plugged, develop also an abstract aspect that imple-
ments the type but which does not implement the methods of the type, so that
they can be given in application modules. An application developer may use one
of the visible aspects by extending it and defining the hook pointcut. In case
the application-specific type is intended to be implemented, the application de-
veloper extends the aspect for that purpose, and in addition to the hook pointcut
definition, the type’s methods have to be implemented.

factoryMethod() : SubType1

<<aspect, abstract>>
SelfPluggagleSubType1

<<pointcut>> context() : AbstractContext
 <<advice>> : ... && context()
factoryMethod() : Type

<<aspect, abstract>>
AbstractSelfPluggableObject

factoryMethod() : SubType2

<<aspect, abstract>>
SelfPluggableSubType2

<<aspect>>
ObjectOfSubType1

method() : ...

<<interface>>
Type

method() : ...
SubType1

method() : ...
SubType2

 factoryMethod() : Type
method() : ...

<<aspect, abstract>>
SelfPluggableType

...
method() : ...

<<aspect>>
ObjectOfType

<<class/aspect>>
Context

...

factoryMethod() {
 return this;
}

Type object = factoryMethod();
/* plug object */

<<context>>
<<context>>

Figure 4.7: Abstract Self-Pluggable Object pattern.

Example

This pattern is illustrated with the plugging of actions in the example framework.
The case of actions is very similar to the plugging menus scenario described in
Section 4.1. Applications may include actions by plugging objects of type IAction.
The following is an Abstract Self-Pluggable Object for this purpose. Ex-
cept for the Template Advice, the solution is analogous to a Self-Pluggable

Object.

91

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

abstract aspect Abs t r a c tAc t i o n {
protected abstract pointcut a p p l i c a t i o n () ;

a f t e r (Act ionBar ab) :
with in (Ab s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&
execution (void c r e a t eA c t i o n s (Act ionBar)) && args (ab) {

ab . r e g i s t e r (c r e a t eA c t i o n ()) ;
}

protected abstract I A c t i o n c r e a t eA c t i o n () ;
}

The above aspect can be extended by Self-Pluggable Objects, which can be
used by application developers. The following is an example Self-Pluggable

Object, based on the Abstract Self-Pluggable Object, for addressing
the exit action. The aspect overrides createAction() for returning an instance of
the framework class ExitAction.

pub l i c abst ract aspect Ex i t extends Abs t r a c tAc t i o n {
protected I A c t i o n c r e a t eA c t i o n () {

return new Ex i tA c t i o n () ;
}

}

The following module illustrates how Exit could be used, by plugging the exit
action in ExampleApplication.

pub l i c aspect ExitOnExample extends Ex i t {
protected pointcut a p p l i c a t i o n () : target (Examp l eApp l i c a t i on) ;

}

The aspect that allows the plugging of application-specific actions could be im-
plemented like shown below. The aspect implements IAction, but it is up to
applications to implement the interface methods (run() in this case).

pub l i c abst ract aspect Act ion extends Abs t r a c tAc t i o n
implements I A c t i o n {

pub l i c abst ract run () ;

protected I A c t i o n c r e a t eA c t i o n () {

92

4.7 Abstract Self-Pluggable Object

return t h i s ;
}

}

The following module illustrates how Action could be used. In addition to the
hook pointcut definition, the method implementation is given.

pub l i c aspect ExampleAct ion extends Act ion {
pub l i c void run () {

/∗ app l i c a t i on−s p e c i f i c ac t i on implementat ion ∗/
}

protected pointcut a p p l i c a t i o n () : target (Examp l eApp l i c a t i on) ;
}

Resulting Context

• The plugging of objects of a certain type is generalized. Support for new
types can be added simply by developing an aspect module that overrides
the Factory Method (e.g. as in Exit).

• The code of the modules that extend the Abstract Self-Pluggable

Object still has some redundancy given that the implementation of the
Factory Methods across the several modules is very similar (only the
name of the class changes).

• The number of subaspects grows along with the number of framework-
provided type implementations, implying one more framework module for
each one (i.e. the aspect).

Known Uses

In Eclipse RCP, an Abstract Self-Pluggable Object can generalize the
plugging of actions, which may be either chosen from a set of framework-provided
actions or implemented by applications. In JHotDraw there is an analogous case
for plugging commands.

93

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

Related Patterns

An Abstract Self-Pluggable Object serves the purpose of structuring a
set of related Self-Pluggable Objects, and consists of an alternative to a
Self-Pluggable Type Hierarchy.

4.8 Self-Pluggable Type Hierarchy

Context

An Abstract Self-Pluggable Object is capable of generalizing the plug-
ging of objects of a certain type, implying that there will exist an aspect for
each type. All these subaspects are similar and only differ in the object instance
returned by the Factory Method.

Problem

How to avoid having several similar subaspects when structuring Self-Pluggable

Objects by means of an Abstract Self-Pluggable Object?

Forces

• In solutions based on an Abstract Self-Pluggable Object, the num-
ber of subaspects grows along with the number of framework-provided type
implementations. The disadvantage is that the solution implies one Self-

Pluggable Object for each pluggable type.

• The fewer framework modules there are, the better.

• Similar or redundant code across related modules should be avoided.

Solution

Merge the implementation of a type hierarchy of default components with the
Self-Pluggable Objects that implement the composition of objects of that

94

4.8 Self-Pluggable Type Hierarchy

type. In order to do so, develop an aspect similar to a Self-Pluggable Ob-

ject that is of the top-most type of the hierarchy (i.e. it declares that it im-

plements that type), while it not implements the type’s methods. Develop a

subaspect for each subtype, where the type methods are implemented. These

aspects may represent partial type implementations by implementing a subset

of the type methods, while leaving the remaining methods to applications. Ap-

plication developers can use the appropriate member of the Self-Pluggable

Type Hierarchy (Figure 4.8) that implements the type they wish to use. If

an application has to include its own implementation of the type, it extends the

top-most aspect.

<<pointcut>> context() : AbstractContext
<<advice>> ... && context()

<<aspect, abstract>>
SelfPluggableAbstractType

method1() : ...
method2() : ...

<<interface>>
Type

method1() : ...
method2() : ...

<<aspect, abstract>>
SelfPluggagleSubType1

method1() : ...
method2() : ...

<<aspect, abstract>>
SelfPluggableAbstractSubType2

<<aspect>>
ObjectOfSubType1

...

method2() : ...

<<aspect, abstract>>
SelfPluggagleSubType3

method2() : ...

<<aspect>>
ObjectOfSubType2

<<class/aspect>>
Context

...

method1() : ...
method2() : ...

<<aspect>>
ObjectOfType

Type object = this;
/* plug object */

<<context>>

<<context>>

<<context>>

Figure 4.8: Self-Pluggable Type Hierarchy pattern.

Example

This pattern is illustrated with the same case of the actions in the example

framework, as it consists of an alternative solution to the one given in Section

4.7.

95

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

The following is a new version of Action that can be used in the same way by
application developers (exemplified in Section 4.7). The aspect is of type IAction,
and registers itself as an action.

pub l i c abst ract aspect Act ion implements I A c t i o n {
protected abstract pointcut a p p l i c a t i o n () ;

a f t e r (Act ionBar ab) :
with in (Ab s t r a c tApp l i c a t i o n +) && a p p l i c a t i o n () &&
execution (void c r e a t eA c t i o n s (Act ionBar)) && args (ab) {

ab . r e g i s t e r (t h i s) ;
}

pub l i c abst ract void run () ;
}

The following is a new version of Exit that can be used in the same way by
application developers (as given in Section 4.7).

pub l i c abst ract aspect Ex i t extends Act ion {
pub l i c void run () {

/∗ the e x i t ac t i on implementat ion ∗/
}

}

Resulting Context

• The solution involves fewer framework modules when comparing with a
solution based on an Abstract Self-Pluggable Object, while it is
more elegant given there is no similar or redundant code.

• The types addressed by the Self-Pluggable Type Hierarchy cannot
be instantiated independently.

Known Uses

In JHotDraw, a Self-Pluggable Type Hierarchy is capable of organiz-
ing the framework-provided figures and connection figures. In order to use an
application-specific figure, application developers may extend a member of the

96

4.9 Association Object

hierarchy, which may be the top element for implementing a completely new

figure, or a lower one in case the figure is intended to be based on an existing

one.

Related Patterns

If merging the implementation of the types with Self-Pluggable Objects is

not possible due to some constraint, a solution based on an Abstract Self-

Pluggable Object can be used instead.

4.9 Association Object

Context

Objects are plugged into an application using Self-Pluggable Objects or

Multi-Context Self-Pluggable Objects. The objects plugged into an

application may need to have other associations between them.

Problem

The plugged objects are not visible to application developers, so that they can

define the associations. How to establish an association between two Self-

Pluggable Objects?

Forces

• Having the possibility of managing object associations independently is

advantageous because application features relying on associations may be

plugged and unplugged without modifying other modules.

• Given that the objects are handled by Self-Pluggable Objects, it

makes sense to define associations in terms of these modules.

97

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

Solution

Develop an abstract aspect, which when made concrete encapsulates an associ-
ation between two objects — an Association Object (Figure 4.9). Use two
Template Pointcuts to capture the creation of the objects, each one with its
own advice. One advice captures and stores a reference to one of the objects, while
the other advice uses that reference to establish the association with its captured
object. Application developers can establish an association by defining the hook
pointcuts on the modules representing the two objects to be associated. An As-

sociation Object can be defined in terms of an Abstract Self-Pluggable

Object or the top-level aspect of a Self-Pluggable Type Hierarchy. This
enables that the association can be established between any object whose type
is a subtype of the type addressed by either the Abstract Self-Pluggable

Object or the Self-Pluggable Type Hierarchy.

<<pointcut>> object1() : SelfPluggableObject1
<<advice>> SelfPluggableObject1.constructor() && object1()

<<pointcut>> object2() : SelfPluggableObject2
<<advice>> SelfPluggableObject2.constructor() && object2()

-obj1 : Type1

<<aspect, abstract>>
AssociationObject

...
constructor() : Type1

<<aspect, abstract>>
SelfPluggableObject1

...
constructor() : Type2

<<aspect, abstract>>
SelfPluggableObject2

...

<<aspect>>
Object1

...

<<aspect>>
Object2

<<aspect>>
Association

/* store returned object */
obj1 = ...

 /* get returned object */
Type2 obj2 = ...
obj2.compose(obj1);

<<object1>>
<<object2>>

compose(Type1) : void
...

<<interface>>
Type2

Figure 4.9: Association Object pattern.

Example

This pattern is illustrated by presenting a solution for improving the associating
actions scenario given in Section 4.1. Below we present the aspect that enables
the encapsulation of such associations, assuming the specialization aspect Action
from Section 4.8 and the specialization aspect Menu from Section 4.6. The first

98

4.9 Association Object

advice captures the instantiation of a subaspect of Action, which is itself an object
of type IAction, while the second advice includes the captured action in a menu
captured from the execution of createMenu() within a subaspect of Menu.

pub l i c abst ract aspect MenuAction {
protected abstract pointcut a c t i o n () ;
protected abstract pointcut menu () ;
pr i va te I A c t i o n a ;

a f t e r (IA c t i o n a) :
with in (Act i on+) && ac t i o n () &&
execution (Act ion . new (. .)) && t h i s (a) {

t h i s . a = a ;
}

a f t e r () return ing (IMenu m) :
with in (Menu+) && menu () &&
execution (IMenu createMenu ()) {

m. addAct ion (a) ;
}

}

Assuming the Self-Pluggable Objects Menu1 and ExitOnExample given pre-
viously, the following aspect implements the association that places the exit action
on “Menu1”.

pub l i c aspect ExitOnMenu1 extends MenuAction {
protected pointcut a c t i o n () : target (ExitOnExample) ;
protected pointcut menu () : target (Menu1) ;

}

Resulting Context

• Associations can be encapsulated and managed independently.

• In order to establish an association there is no need to understand the
context where the objects are plugged nor any details about their type
implementation.

99

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

Known Uses

In JHotDraw an Association Object is capable of defining the valid source
and target figures which a connection figure may connect. However, the solution
is a bit different than the one in the example, since the valid connections are
given by overriding a hook method of the connection figure. In Eclipse RCP,
Association Objects are capable of associating actions with the toolbar, the
actions with the menus, or viewparts with the perspectives.

Related Patterns

An Association Object may be adaptable by having Composition Hook

Methods, which in turn can be completed by Self-Pluggable Objects.

4.10 Example Framework Revisited

This section revisits the example framework, taking into account the Modular

Hot Spots pattern language given throughout sections 4.5-4.9. Figure 4.10
depicts the new reuse interface after applying the patterns. We can see the several
abstract modules (gray) and their abstract pointcuts. Regarding the menus,
the example of Section 4.6 is considered (Multi-Context Self-Pluggable

Object), instead of the one given in Section 4.5. Regarding the actions, the
examples of Section 4.8 are considered (Self-Pluggable Type Hierarchy),
instead of the ones of Section 4.7.

Figure 4.10 also depicts the framework-based application based on Modular

Hot Spots that was given throughout the patterns. We can see the several ap-
plication aspects (inheriting from the specialization aspects) and their pointcut
definitions. The following points briefly compare this solution with the conven-
tional one given in Section 4.1.

1. Each of the application concepts (i.e. application, menu, action, exit, and
menu action) can be used incrementally, where each concept instance is im-
plemented in an independent module. Throughout the pattern examples a
framework-based application was given in the modules ExampleApplication

100

4.10 Example Framework Revisited

<<abstract>>
AbstractApplication

<<poincut>> context() : AbstractApplication || Menu

<<aspect, abstract>>
Menu

<<poincut>> action() : Action
run() : void

<<aspect, abstract>>
Action

<<aspect, abstract>>
Exit

<<poincut>> menu() : Menu
<<poincut>> action() : Action

<<aspect, abstract>>
MenuAction

<<aspect>>
Menu1

Example
Application

<<aspect>>
Menu2

<<context>>

<<aspect>>
ExitOnExample

<<application>>

run() : void

<<aspect>>
ExampleAction

<<application>>

<<aspect>>
ExitOnMenu1

<<menu>>

<<action>>

<<context>>

Figure 4.10: Modular Hot Spots for the example framework.

(Section 4.5), Menu1 and Menu2 (Section 4.6), ExitOnExample and Exam-
pleAction (Section 4.7), and ExitOnMenu1 (Section 4.9).

2. Without source code modification, the application may be compiled with
subsets of the modules enumerated in (1), obtaining variants of the ap-
plication. This issue is particularly important in the context of software
product-lines. For instance, one could have a variant of the application
without the “Menu2”, just by not including that module in the compilation.

3. Application features can be removed without understanding source code, as
far as one knows which application elements the modules are representing
(a fairly basic information that is easy to maintain). This issue facilitates
the maintenance and reengineering of framework-based applications. For
instance, suppose that the application implemented by the modules enu-
merated in (1) needs to be changed for a new version without the Exam-
pleAction. If the task is given to a programmer that was not the one who
developed the application in the first place, his or her task becomes facili-
tated, given that only that module has to be identified and removed, while
no understanding of the existing code is necessary.

4. The associations between menus and actions can be independently and non-
invasively defined.

101

4. PATTERNS FOR FRAMEWORK SPECIALIZATION ASPECTS

5. The two hook methods of AbstractApplication, plus the two methods of
Menu, of the conventional reuse interface, no longer have to be dealt with
by application developers. Instead, there are pointcuts that assume their
role. The advantages of the latter is that compositions can take place
without modifications and inspection of the target modules.

6. The two classes MenuBar and ActionBar are no longer relevant for the ap-
plication developer.

The items (1), (2), and (3) are related with the improvement of the plugging
menus and menu context scenarios given in Section 4.1. Item (4) is related with
the improvement of the associating actions scenario also given in Section 4.1.

4.11 Discussion

Modular Hot Spots, i.e. a set of specialization aspects, can form a black-box
reuse interface with a higher level of abstraction than a conventional black-box
reuse interface. Black-box frameworks are pointed out as adequate for having
an accompanying Visual Builder (Roberts & Johnson, 1997) for generating
framework-based applications from high-level domain-specific descriptions. Such
Visual Builders, referred to as F-DSLs in this dissertation, can be developed
more easily if having Modular Hot Spots, given that application code resem-
bles more closely the concepts and relationships of a given domain.

A Visual Builder requires a definition of a language of domain-specific
concepts. Chapter 5 presents an approach for defining those concepts as a set of
specialization aspects. The solutions for such specialization aspects are closely
related to the patterns of Modular Hot Spots, in the sense that each pattern
is associated with one modeling construct that can be used in the definition of
the language of domain-specific concepts.

102

Chapter 5

Domain-Oriented Reuse Interfaces

This chapter addresses the concept of a domain-oriented reuse interface (DORI)

and its realization using framework specialization aspects (SAs). Section 5.1 gives

an overview of the approach and outlines the role of SAs in DORIs. Section 5.2

explains the concept of a DORI. Section 5.3 describes the modeling constructs

that can be represented in a DORI and how to use them. Section 5.4 presents

a DORI for an example framework, illustrating the several modeling constructs.

Finally, Section 5.5 concludes the chapter by emphasizing the value of DORIs for

developing F-DSLs.

5.1 Overview

For a given framework, a DORI is a reuse interface that is structured according

to the domain concepts (or simply, concepts) involved in framework-based appli-

cations. The idea behind the words “domain-oriented” in the acronym DORI, is

to emphasize that the reuse interface is intended to have a close relation with a

domain variability model (Pohl et al., 2005).

A domain variability model is suitable for defining the concepts of an F-DSL

and can be given as a conceptual model. Application models described using an

F-DSL are defined in terms of instances of the concepts of the domain variability

model. The two major requirements of a DORI are the following:

103

5. DOMAIN-ORIENTED REUSE INTERFACES

1. The reuse interface unambiguously defines a domain variability model for
the framework. This implies that from a DORI one can obtain a unique
conceptual model that represents a domain variability model.

2. From an application model, i.e. an instance of the conceptual model of
(1), application code based on the reuse interface can be obtained unam-
biguously, without having a transformation definition for each DORI. This
implies that it is possible to have a generic procedure, applicable to every
DORI, for generating application code from application models.

Requirement (1) enables the definition of concepts of an F-DSL to be in the
framework itself, or more concretely, in its reuse interface. Requirement (2)
enables one to have a generic transformation definition, which can be realized
in a generic code generator, and thus, it avoids the need of developing specific
code generators for each F-DSL. In this way, a framework with a DORI not
only implements an abstract solution to a family of related problems, but it also
implements an F-DSL for building applications of that family.

Figure 5.1 presents a use case diagram depicting the role of domain and ap-
plication engineers in DORI-based development. The stereotype <<requires>>

was used to denote that a use case requires the behavior of the other use case that

domain
engineer

application
engineer

Base Framework

Develop
DORI

Tool

Generate Domain
Variability Model

<<requires>>

Create
Application Model

<<requires>>

Generate
Application

<<requires>>

Figure 5.1: The role of domain and application engineers in DORI-based devel-
opment.

104

5.1 Overview

it depends on. A domain engineer has the task of developing a DORI for a base
framework. By using a generic tool, he or she can generate the domain variability
model that is expressed in the DORI. On the other hand, an application engineer
uses the tool for creating an application model, which instantiates the domain
variability model. In turn, he or she uses the tool to generate the application
from the application model.

Several hot spots are represented in the reuse interface of a framework. Each
hot spot supports the instantiation of a concept in a framework-based application.
In a conventional framework, the several hot spots overlap in framework classes
(recall Figure 2.1). Moreover, different concepts are instantiated in framework-
based applications using different adaptation mechanisms, such as inheritance,
hook methods, or object composition. Due to the many-to-many mapping from
concepts to framework classes and the non-uniform way of using framework con-
cepts, requirements (1) and (2) cannot be easily satisfied by means of a conven-
tional reuse interface.

As explained in Chapters 3-4, SAs are capable of expressing hot spots and
have the following properties:

a. Each concept offered by the framework is able to be represented in a single
and independent module — an SA. Hot spots are captured by means of SAs,
providing a uniform reuse interface to develop framework-based applications.

b. Each concept instance is represented in a single and independent module based
on an SA — an AA. Concepts are instantiated uniformly. A concept instance
is represented by inheritance, parameterization is represented by invoking the
super constructor, and association links between concept instances are repre-
sented by pointcut definitions to other AAs.

In an F-DSL, the concepts provided by the framework are typically first-class
entities in the language. Property (a) enables a close relation between SAs and
F-DSL concepts. Property (b) enables a close relation between AAs and instances
of F-DSL concepts. Therefore, an SA is an adequate artifact to express a F-DSL
concept, whereas an AA is an adequate artifact to express an instance of an
F-DSL concept.

105

5. DOMAIN-ORIENTED REUSE INTERFACES

5.2 Concept

Figure 5.2 presents a conceptual model describing DORIs and DORI-based ap-
plications. This model contains classes in common with the conceptual model of
Figure 3.3. Such classes relate to SAs and AAs, and are represented in gray.

A DORI expresses a domain variability model given as a conceptual model,
which is composed of several concepts. A DORI is composed of several DORI
modules. A DORI module bridges a concept of the domain variability model and
an SA. Each concept is either independent or dependent. The former is a concept
whose instances may exist by their own, whereas the latter is a concept whose
instances may only exist as a part of another concept instance. An independent
concept may be, for example, a stand-alone application, while a dependent con-
cept may be a menu that is part of an application. An independent concept
is represented in terms of an SA that is an abstract class, whereas a dependent
concept is represented in terms of an SA that is an abstract aspect.

A dependent concept has to define one or more composite associations, each of
which defining its parent (i.e. the concept that contains the dependent concept).
A dependent concept may also define directed associations with other target con-
cepts. Each of these relationships is represented in terms of an abstract pointcut
that is part of the abstract aspect that represents the dependent concept.

A concept may have several attributes. Each attribute is represented in terms
of a parameter of the SA that represents the concept. A concept may have a
super concept. If the SA that represents the concept has a super SA, then the
super concept is the concept represented by the super SA. A concept inherits the
attributes and relationships of its super concept.

An application model describes a DORI-based application in terms of several
concept instances, which are instances of the concepts of the domain variability
model. Each concept instance is represented through an application aspect (AA).
The AA may be either a concrete class or a concrete aspect, according to the
SA from which it inherits. A concept instance may contain association links to
other concept instances. Such association links are instances of the relationships
between concepts. In fact, only the instances of dependent concepts may have

106

5.2 Concept

name

<<abstract>>
Concept

Concept
Instance

<<instance-of>>

1

Independent

Dependent

name
Attribute

*

Abstract
Aspect

Abstract
Class

1

11

1

<<abstract>>
Specialization

Aspect
Parameter *1 1

Abstract
Pointcut

1..*

...

<<abstract>>
Relationship

<<abstract>>
Application
Aspect

Concrete
Aspect

Concrete
Class

Pointcut

1

defines

Association
Link

<<instance-of>>
Parameter
Value

*
value

Attribute
Value

for

*

*

1

*

1

1

1 1

1 1

1 1

type

1

DORI
Module

1

1

target

super 0..1

1..*
Composite
Association

Directed
Association

parent

1

*

1 1

to

1

super 0..1

DORI *

Application
Model

Domain
Variability
Model

1

*

1

*

<<instance-of>>

1

expresses expresses

Figure 5.2: Conceptual model of DORIs (top) and DORI-based applications (bot-
tom).

association links, but this constraint is not visible in the model for reducing clut-

tering. Concrete aspects contain pointcuts that define the abstract pointcuts of

the SA. Each association link is represented in terms of one of these pointcuts.

Finally, each concept instance contains one attribute value for each concept at-

107

5. DOMAIN-ORIENTED REUSE INTERFACES

tribute. Each attribute value is represented in terms of a parameter value of the
AA that represents the concept instance. The instance of a concept that has a
super concept also has to contain attribute values and association links according
to the attributes and relationships of the super concept.

The mapping between modeling elements (i.e. concepts, attributes, and rela-
tionships) and SAs (including their parameters and abstract pointcuts), has to
be explicitly specified. The next section details a technical solution for defining
this mapping, explaining how the modeling constructs can be used.

5.3 Expressing Modeling Constructs

The previous section presented the concept of DORI in terms of the relation be-
tween a domain variability model and SAs, and the relation between application
models and AAs. This section presents a technical solution based on annotations
for mapping concepts and SAs. In addition to the general modeling constructs
given in the previous section, three special kinds of concepts for addressing inte-
gration of manual code with generated code are also introduced in this section.

Figure 5.2 described the basic conceptual modeling constructs that can be
expressed in a DORI. Figure 5.3 describes all the supported modeling constructs
with a conceptual model, including the constructs that were already introduced
in Figure 5.2. This model includes the different kinds of concepts, while it omits
details regarding the concepts being either independent or dependent. As de-
scribed in the model of Figure 5.2, the specialization aspect kind (i.e. either
abstract class or abstract aspect) determines if the concept is either independent
or dependent.

An abstract concept is a concept that cannot be instantiated. A public concept
is a concept whose instances are to be transformed into an application module
that is intended to be used manually, e.g. a class that will be instantiated within
another application. An open concept is a concept that is representing an open
variation point (Gurp et al., 2001). An open variation point is an adaptable part
that framework-based applications may extend by providing arbitrary applica-
tion code, which cannot be anticipated. In a DORI, instances of open concepts
are adapted by implementing well-defined methods — the open methods. These

108

5.3 Expressing Modeling Constructs

name : string
Concept

Open
Concept

0..1
super

parentname : string
Attribute * multiplicity : string

ordered : bool

<<abstract>>
Relationship

Composite
Association

Directed
Association

*
1

accessibleobject : any

Accessible
Concept

Abstract
Concept

*access

Public
Concept

target1

pointcut : string
Annotation1

Open
Method *

Figure 5.3: Modeling constructs that can be represented in a DORI.

methods are intended to be exposed to application developers in isolation. Since
an application developer has to manipulate the modules, an open concept is a
public concept. An accessible concept is a concept whose instances have an ac-
cessible object that may be accessed by instances of open concepts. These two
kinds of concepts serve the purpose of realizing the integration of manual code
and code that can be generated from models.

A relationship has a multiplicity associated with the parent or target concept
(depending on the association kind), and it may be ordered or not. A relationship
has an attached annotation that stores the name of the abstract pointcut which
represents it.

5.3.1 Annotations

Figure 5.2 described how the concepts of a domain variability model relate to SAs.
A possible technical solution for associating the concepts, their attributes and
relationships, with the classes/aspects, their parameters and abstract pointcuts,
is to annotate the SAs in order to define this mapping.

A regular concept is expressed by annotating an SA with @Concept. In ad-
dition, there are four other kinds of concepts that are expressed with their own
annotation. An abstract concept is expressed using @AbstractConcept, a pub-
lic concept is expressed using @PublicConcept, an accessible concept is expressed

109

5. DOMAIN-ORIENTED REUSE INTERFACES

using @AccessibleConcept, and finally, an open concept is expressed using @Open-

Concept. The name of the SA defines the name of the concept which the SA is
representing.

An abstract class is considered to represent an independent concept, whereas
an abstract aspect is considered to represent a dependent concept. An abstract
aspect must have at least one @PartOf annotation on an abstract pointcut, for
defining a composite association with the parent concept. The following code
shows a sample DORI module representing a concept Child which has the concept
Parent as its parent. Each instance of Parent has to contain one or more child
instances of Child, given that the multiplicity is “1..*” (annotation attribute mult).
Moreover, the child instances are ordered, given that the annotation attribute
ordered is set to true.

@Concept
pub l i c abst ract aspect Ch i l d {

/∗ . . . ∗/

@PartOf (concept=" Parent " , mult=" 1 . . ∗ " , o r d e r ed=true)
protected abstract pointcut pa r en t () ;

}

A child concept may define multiple parent concepts. In this case, there is
a @PartOf annotation for each pointcut that represents a composite association
with the parent concept.

A concept defined by a DORI module may have directed associations to other
concepts by annotating an abstract pointcut with @Association. The following
code shows the same abstract aspect of the previous example defining a directed
association with multiplicity “1” to RelatedConcept. This implies that each in-
stance of Child has to define one association link to an instance of RelatedConcept.

@Concept
pub l i c abst ract aspect Ch i l d {

/∗ . . . ∗/

@As so c i a t i o n (concept=" Re la tedConcept " , mult="1")
protected abstract pointcut concept () ;

}

110

5.3 Expressing Modeling Constructs

When a DORI module defines an accessible concept, it must have an annota-
tion @AccessibleObject on one of its attributes, for defining which is the accessible
object. The object referenced by that attribute will be the accessible object as-
sociated with the concept instance. The following code shows a sample DORI
module representing an accessible concept, defining the attribute entity as the
accessible object.

@Acce s s i b l eConcep t
pub l i c abst ract aspect Acc e s s i b l eConc ep t {

@Acc e s s i b l eOb j e c t
En t i t y e n t i t y ;

/∗ . . . ∗/
}

A DORI module representing an open concept must have at least one of its
abstract methods annotated with @OpenMethod, for defining the open methods.
The following code shows a sample of a DORI module representing an open
concept with the open method open().

@OpenConcept
pub l i c abst ract aspect OpenConcept {

@OpenMethod
protected abstract void open () ;
/∗ . . . ∗/

}

The attributes of a concept are represented by annotating the module’s con-
structor with the annotation @Attributes. This implies that each parameter of the
constructor is expressing an attribute of the concept. The following code shows
a sample DORI module representing a concept with the attributes a and b.

@Concept
pub l i c abst ract aspect Concept {

@At t r i b u t e s
pub l i c Concept (S t r i n g a , i n t b) {

/∗ . . . ∗/
}
/∗ . . . ∗/

}

111

5. DOMAIN-ORIENTED REUSE INTERFACES

5.4 DORI Example

This section presents a DORI for an example framework, illustrating all modeling
constructs detailed in Section 5.3.

5.4.1 Example Framework

For the purpose of giving examples of how to represent the several modeling
constructs in a DORI, this section introduces an example GUI framework. The
example is a fragment extracted from the Eclipse RCP framework, which was
simplified for clarity of explanation.

5.4.1.1 Domain variability model

Figure 5.4 presents a domain variability model for the framework. An application
has a certain name that appears as the window title. It may have several actions.
An action may be framework-provided, as for instance the maximize and exit
actions, or application-specific. In the latter case, they are referred to as appli-
cation actions and a name has to be given to them. An application is considered
an open concept, given that its behavior is arbitrary, whereas the exit action is
considered an accessible concept because other actions may need to execute it.
For instance, an application action could be a “save and quit” action, where all
data is saved first and the application is terminated after. An application may
have several menus, whose order is relevant because it defines how they appear

name
Application

<<abstract>>
Action

*

*

name

<<open>>
ApplicationAction

name
Menu

Maximize

1

<<abstract>>
MenuItem

MenuAction
name
SubMenu

1..*

executes

{ordered} {ordered} {ordered}

ToolBar 1..*
0..1

includes

*

<<accessible>>
Exit

Figure 5.4: Domain variability model of the example framework.

112

5.4 DORI Example

on the menu bar. Each menu has a name and contains one or more menu items.
A menu item can be either a menu action that executes a certain action, or a
sub menu that has a name and may also contain several menu items. The menu
items are also ordered. Finally, an application may have a toolbar, which may
include one or more actions. The order of the actions in the toolbar is controlled
by the framework.

5.4.1.2 Conventional reuse interface

Figure 5.5 presents the classes of the reuse interface of the example framework
that are relevant with respect to the concepts included in Figure 5.4. The figure
only shows the attributes and methods that are relevant in the context of the
given concepts.

fillMenuBar(IMenuManager) : void
fillToolBar(IToolBarManager) : void
getName() : String
makeActions(IBarAdvisor) : void

<<abstract>>
AbstractApplication

register(IAction) : void

<<interface>>
IBarAdvisor

run() : void

<<interface>>
IAction

setText(String) : void

<<abstract>>
AbstractAction

<<interface>>
IToolBarManager

add(IAction) : void
add(IMenuManager) : void

name
MenuManager

run() : void

Exit

<<interface>>
IContributionItem

createMaximize() : Maximize
createExit() : Exit

ActionFactory

<<interface>>
IMenuManager

add(IAction) : void
add(IContributionItem) : void

<<interface>>
IContributionManager

run() : void

Maximize

Figure 5.5: Conventional reuse interface of the example framework.

The following list presents the necessary tasks for using the concepts in a
framework-based application:

• An application has to extend the abstract class AbstractApplication and
to implement the abstract methods. The method getName() defines the
window name, makeActions() allows actions to be plugged through an object

113

5. DOMAIN-ORIENTED REUSE INTERFACES

of type IBarAdvisor, fillMenuBar() allows menus to be plugged through an
object of type IMenuManager, and fillToolBar() allows actions to be plugged
in the tool bar through an object of type IToolBarManager.

• An action is represented by the interface IAction. There is an abstract class
AbstractAction from which all the classes implementing actions are likely to
inherit from. Framework-based applications may define their own actions by
extending AbstractAction. On the other hand, framework-provided actions
can be used (for instance Maximize or Exit), and they should be created
using the ActionFactory.

• A menu is represented by the interface IMenuManager and realized in the
class MenuManager. A submenu is also represented by the same class.
Menus may contain contribution items, which are represented by the in-
terface IContributionItem, and IMenuManager is a contribution item itself.
Menus may include actions. A menu can be filled using the method add().

• The application will have a tool bar if at least one action is plugged into
the application, by invoking add() on the IToolBarManager object when
implementing fillToolBar().

In order to use the given concepts in a framework-based application, an appli-
cation developer has to deal with the given reuse interface. Notice that the classes
contain much more detail than an application description using the actual domain
terminology would require. For instance, the hook methods of AbstractApplica-
tion, the IBarAdvisor type, or the ActionFactory, are implementation-related and
therefore they are solution space artifacts, rather than problem space artifacts
that map directly to a domain concept. On the other hand, the classes may not
explicitly represent certain domain concepts. For instance, the submenu does not
have a dedicated class representing it. Moreover, the locations where application-
specific functionality can be added (i.e. open variation points) are also not made
explicit.

Figure 5.6 presents an object diagram describing an example application
model, which is an instance of the domain variability model given in Figure 5.4.

114

5.4 DORI Example

:Application
name="App"

:Menu
name="M1"

:Exit

:Maximize

:SubMenu
name="SM1"

:SubMenu
name="SM2"

:ApplicationAction
name="A1"

<<accesses>>

:MenuAction

:ToolBar

public class App extends AbstractApplication {
 private static IAction action_max;
 private static IAction action_exit;
 private static IAction action_app;

 public String getName() {
 return "App";
 }

 public void makeActions(IBarAdvisor b) {
 action_max = ActionFactory.createMaximize();
 b.register(action_max);
 action_exit = ActionFactory.createExit();
 b.register(action_exit);
 action_app = new A1(action_exit);
 b.register(action_app);
 }

 public void fillMenuBar(IMenuManager m) {
 MenuManager menu_m1 = new MenuManager("M1");
 menu_m1.add(action_max);
 m.add(menu_m1);
 MenuManager submenu_sm1 = new MenuManager("SM1");
 menu_m1.add(submenu_sm1);
 MenuManager submenu_sm2 = new MenuManager("SM2");
 submenu_sm2.add(submenu_sm1);
 }

 public void fillToolBar(IToolBarManager t) {
 t.add(action_exit);
 t.add(action_max);
 }
}

public class A1 extends AbstractAction {
 private IAction exit;

 public A1(IAction exit) {
 setText("A1");
 this.exit = exit;
 }

 public void run() {
 // do something
 exit.run();
 }
}

Figure 5.6: Example application model and its realization.

The figure also shows the application code that implements the model in the mod-

ules App and A1, using the reuse interface given in Figure 5.5. The application

action “A1” does something and uses the exit action to quit the application.

5.4.2 DORI Modules

This subsection illustrates the use of the several modeling constructs by present-

ing DORI modules for the given example framework. Each example covers a

fragment of the given domain variability model (Figure 5.4) and a fragment of

the conventional reuse interface (Figure 5.5). The AOP language used in the

examples is AspectJ (Eclipse Foundation, 2007a). All the code examples are

complete, except for both package and import declarations, which are omitted.

When appropriate, the examples refer to the patterns given in Chapter 4.

115

5. DOMAIN-ORIENTED REUSE INTERFACES

Each modeling construct is illustrated with an example given in a figure that
has the following graphical layout (see Figure 5.7):

1. The upper part presents DORI modules, together with a class diagram
showing the fragment of the domain variability model that they represent.
The white classes represent the concepts that actually defined by the DORI
modules of the figure, whereas the classes that are shaded are not defined
by the DORI modules of the figure. Such shaded classes represent concepts
defined by DORI modules of earlier examples. All the classes that are
presented can be unambiguously generated from the DORI modules using
a tool.

2. The bottom part presents an object diagram showing a fragment of an
example application model that is an instance of the class diagram of (1),
together with the AAs that realize that model. Analogously to (1), when
objects are shaded in the diagram it means that they were introduced in an
earlier example, but their AAs are now shown in the figure. All the AAs
that are presented can be unambiguously generated from the application
model using a tool.

AA X1

AA Y1
AA Y2

DORI Module X
DORI Module Y

...
X

:X
...

Y*

domain
engineer

<<instance of>>

:Y
:Y

generate
(tool)

generate
(tool)

application
engineer

Z *

:Z

specifies

specifies

Figure 5.7: Graphical layout of the presentation of DORI Module examples.

116

5.4 DORI Example

5.4.2.1 Concepts and attributes

In order to illustrate concepts and attributes, consider the case of the independent
concept application. As described, a subclass of AbstractApplication has to be pro-
vided in order to implement an application. According to the domain variability
model, the concept of having an empty application only involves the application
name. Therefore, other details, such as the hook methods, shall not be handled
by application code. Figure 5.8 presents a DORI module that expresses the ap-
plication concept. This concept is considered public since this module is the main
class of the application, which can be used in other artifacts (e.g. a descriptor
file). The module name defines the concept name (i.e. “Application”), while the
annotated constructor defines the concept’s attributes (i.e. “name” of type string).

In conventional reuse interfaces, abstract classes that are intended to be spe-
cialized by a framework-based application commonly have Composition Hook

Methods (Section 4.4). In this case we have the methods makeActions(), fill-
MenuBar(), and fillToolBar(), which conform to this pattern.

The bottom part of the figure presents an instance of the concept application
with the attribute name equals to “App”, together with the AA that inherits
from the DORI module and implements the concept instance. Notice that the
object diagram contains all the necessary information for obtaining the code in a
straightforward way.

The next subsections present other DORI modules that depend on Application,
namely for completing the behavior of the Composition Hook Methods.

5.4.2.2 Composite associations

In order to illustrate composite associations, consider the menu concept as a child
of application. Using a Self-Pluggable Object (Section 4.5) to represent a
child concept is an adequate solution.

Figure 5.9 presents a DORI module that expresses the menu concept. A menu
was considered a non-public concept, and therefore is annotated with @Concept.
Analogously to the case of Application, this module defines an attribute represent-
ing its name. It has a method createMenu() that creates an instance of MenuMan-
ager using the name attribute. The method addItems() is a Composition Hook

117

5. DOMAIN-ORIENTED REUSE INTERFACES

@PublicConcept
public abstract class Application extends AbstractApplication {
 private String name;

 @Attributes
 public Application(String name) {
 this.name = name;
 }

 protected final String getName() {
 return name;
 }

 protected final void makeActions(IBarAdvisor barAdvisor) {
 }

 protected final void fillMenuBar(IMenuManager menuBar) {
 }

 protected final void fillToolBar(IToolBarManager menuBar) {
 }
}

name : string
Application

<<instance of>>

public class Application1 extends Application {
 public Application1() {
 super("App");
 }
}

:Application
name="App"

Figure 5.8: Expressing concepts in DORIs.

Method, which analogously to the case of Application, is left empty and locked.
This method will be handled by the DORI module that represents the menu
items (to be introduced later). The parent concept of the composite association
is given by the DORI module Application, implying that each application may
contain several menus, which are ordered. The class diagram shows the fragment
of the domain variability model that the code represents. Notice the attachment
of an annotation on the composite association which indicates the pointcut that
enables the composition of a menu in an application.

The bottom part of the figure shows an application model that includes a
menu with name “M1” in the application that was already defined in the previous
subsection. The AA that represents the menu defines the pointcut application()

on the module Application1 (given in Figure 5.8). The application model contains

118

5.4 DORI Example

public aspect Menu1 extends Menu {
 public Menu1() {
 super("M1");
 }

 public pointcut application() : target(Application1);
}

@Concept
public abstract aspect Menu {
 private String name;

 @Attributes
 public Menu(String name) {
 this.name = name;
 }

 public IMenuManager createMenu() {
 IMenuManager menu = new MenuManager(name);
 addItems(menu);
 return menu;
 }

 final void addItems(IMenuManager parent) {
 }

 @PartOf(concept="Application",mult="*",ordered=true)
 public abstract pointcut application();

 after(IMenuManager menuBar) :
 within(Application+) && application() && args(menuBar) &&
 execution(void Application.fillMenuBar(IMenuManager)) {
 IMenuManager menu = createMenu();
 menuBar.add(menu);
 }
}

name : string
Application *

name : string
Menu

:Application
name="App"

:Menu
name="M1"

pointcut application()

<<instance of>>

{ordered}

Figure 5.9: Expressing composite associations in DORIs.

all the required information for obtaining the code. The name of the pointcut

application() can be obtained from the annotation on the association between the

classes that represent the concepts.

An instance of a parent concept may contain several instances of child con-

cepts, as seen in the given example. Depending on the situation, the order of the

several children may be relevant. For instance, in GUI applications it is relevant

119

5. DOMAIN-ORIENTED REUSE INTERFACES

which menus appear first on the menu bar. Suppose an application moduleMenu2
defined analogously to the module Menu1 of Figure 5.9, also having Application1
as parent. Given that the menu order is relevant, it is missing the information
that determines the order of the menus. Since the order of the menus corresponds
to the order of execution of the invocations of IMenuManager.add(), the menu that
is plugged first is the one that appears first on the menu bar. Therefore, it is
necessary to control the order of advice execution between Menu1 and Menu2.
This is done using aspect precedences. Figure 5.10 illustrates this situation for
the case of having menu “M1” appearing first. The precedence declaration in the
module MenuOrder defines that Menu2 has the highest precedence, which in case
of after advices results in being executed last. Although the object diagram does
not contain explicit information about the order, it is assumed that it is possible
to explicitly specify the order of the child objects of a certain parent object.

public aspect Menu2 extends Menu {
 public Menu2() {
 super("M2");
 }

 public pointcut application() : target(Application1);
}

:Application
name="App"

:Menu
name="M1"
:Menu

name="M2"

name : string
Application *

name : string
Menu

<<instance of>>

{ordered}

public aspect MenuOrder {
 declare precedence: Menu2, Menu1;
}

Figure 5.10: Ordering of association links.

5.4.2.3 Abstract concepts and inheritance

In order to illustrate abstract concepts and inheritance, consider the case of the
abstract concept action and the concrete concept maximize. Using an Abstract

Self-Pluggable Object (Section 4.7) for representing an abstract concept is
an adequate solution.

120

5.4 DORI Example

Figure 5.11 presents two DORI modules — Action and Maximize. Although it
might not be always the case, a DORI module expressing an abstract concept is
likely to have abstract methods, which are to be defined by its extensions. The
Action module defines a composite association as in the previous Menu module,
but it contains an abstract method createAction(), which is a Factory Method

(Gamma et al., 1995) for obtaining an instance of IAction. Since every action is
plugged in the application in the same way, the several DORI modules that inherit
from Action only have to provide instances of the specific actions by defining
createAction(). As an example of such an extension, Figure 5.11 presents the
module Maximize. It implements createAction() for returning the maximize action
using ActionFactory. Notice that the abstract pointcut application() declared in
Action is still to be defined in the AAs that inherit from Maximize.

The figure shows the fragment of the domain variability model that the two

public aspect Maximize1 extends Maximize {
 public pointcut application() : target(Application1);
}

@AbstractConcept
public abstract aspect Action {

 @PartOf(concept="Application",mult="*")
 public abstract pointcut application();

 after(IBarAdvisor barAdvisor) :
 within(Application+) && application() && args(barAdvisor) &&
 execution(void Application.makeActions(IBarAdvisor)) {
 registerAction(barAdvisor);
 }

 protected abstract IAction createAction();

 IAction registerAction(IBarAdvisor barAdvisor) {
 IAction action = createAction();
 barAdvisor.register(action);
 return action;
 }
}

@Concept
public abstract aspect Maximize extends Action {
 protected IAction createAction() {
 return ActionFactory.createMaximize();
 }
}

name : string
Application *

pointcut application()

<<abstract>>
Action

Maximize

:Application
name="App"

:Maximize

<<instance of>>

Figure 5.11: Expressing abstract concepts and inheritance in DORIs.

121

5. DOMAIN-ORIENTED REUSE INTERFACES

DORI modules are expressing, and an example application model fragment that
instantiates it. The example defines the inclusion of the maximize action in
the application “App” defined previously. In the code we can see the pointcut
application() matching the module Application1 (introduced in Figure 5.8).

5.4.2.4 Multi-parent child concepts

In order to illustrate multi-parent child concepts, consider the concept menu item,
which can be a child of either menu or submenu. Using a Multi-Context Self-

Pluggable Object (Section 4.6) for representing a multi-parent child concept
is an adequate solution.

DORI modules that express a multi-parent child concept are similar to the
ones that express normal child concepts, except that they declare several parent
concepts. Figure 5.12 presents a DORI module MenuItem that expresses an ab-
stract concept with two parent declarations — one with the menu as parent and
another with the submenu as parent. The mechanism for composition is the same
as shown before, but the pointcuts are not abstract and they are empty (no join
points are matched). The idea is to redefine the proper pointcut according to
the parent concept of the menu item. Figure 5.12 also presents a DORI module
SubMenu expressing the concept of a submenu, as a subaspect of MenuItem.

The application model fragment shown in the figure describes the inclusion of
the submenu “SM1” in the menu “M1” (introduced in Figure 5.9), and the inclu-
sion of a submenu “SM2” in “SM1”. The figure contains also the corresponding
AAs. Notice that an AA that inherits from SubMenu only defines the appropri-
ate pointcut, i.e. either menu() or submenu(), according to the type of its parent
concept instance.

It can happen that the same concept (e.g. a menu) has different classes
representing it, according to the context where it is used (e.g. a class for a
normal menu, and another class for a pop-up menu). In any case, the way those
concepts are used in different contexts of an application is likely to be different
(e.g. the objects have to be plugged into different objects). In the example shown
in this subsection, neither the class nor the way the object is plugged into differs,
since the concepts menu and submenu are implemented in the same class.

122

5.4 DORI Example

@AbstractConcept
public abstract aspect MenuItem {

 @PartOf(concept="Menu",mult="1..*",ordered=true)
 public pointcut menu();

 after(IMenuManager m) :
 within(Menu+) && menu() && args(m) &&
 execution(void addItems(IMenuManager)) {
 addItem(m);
 }

 @PartOf(concept="SubMenu",mult="*",ordered=true)
 public pointcut submenu();

 after(IMenuManager m) :
 within(SubMenu+) && submenu() && args(m) &&
 execution(void addItems(IMenuManager)) {
 addItem(m);
 }

 protected abstract void addItem(IMenuManager parent);
}

@Concept
public abstract aspect SubMenu extends MenuItem {
 private String name;

 @Attributes
 public SubMenu(String name) {
 this.name = name;
 }

 void addItem(IMenuManager parent) {
 IMenuManager menu = new MenuManager(name);
 addItems(menu);
 parent.add(menu);
 }

 final void addItems(IMenuManager parent) {
 }
}

public aspect SubMenu1 extends SubMenu {
 public SubMenu1() {
 super("SM1");
 }

 public pointcut menu() : target(Menu1);
}

public aspect SubMenu2 extends SubMenu {
 public SubMenu2() {
 super("SM2");
 }

 public pointcut submenu() : target(SubMenu1);
}

name : string
Menu 1..* <<abstract>>

MenuItem

:Menu
name="M1"

:SubMenu
name="SM1"

pointcut menu()

<<instance of>>

name : string
SubMenu

*

pointcut submenu()

:SubMenu
name="SM2"

{ordered} {ordered}

Figure 5.12: Expressing multi-parent child concepts in DORIs.

123

5. DOMAIN-ORIENTED REUSE INTERFACES

5.4.2.5 Open and accessible concepts

In order to illustrate open and accessible concepts, consider the case of the con-
cepts application action and exit. When using an open concept, the behavior of
an open method is not described in the application model. Instead, there is a
dedicated module for encapsulating the method code that has to be manually
defined.

Figure 5.13 presents the definition of the open concept application action
in a DORI module that inherits from Action and defines action() as an open
method. Also inheriting from Action, the figure presents the DORI module Exit

representing the exit action as an accessible concept, defining that the accessible
object is given by the attribute action. The domain variability model fragment
shows the two concepts specializing the action concept.

As explained, instances of an open concept may access objects associated with
instances of accessible concepts. In the application model we can see an instance
of Exit, and an instance of ApplicationAction that defines an access to the former
(association link with stereotype <<accesses>>). This association link has no
corresponding relationship in the class diagram. Suppose that every instance of
an open concept may define such access association links to instances of accessible
concepts. Chapter 6 gives more detail on this issue.

In the code that implements the application model we can see the AA Exit1

that includes the exit action in the application “App” (defined in Figure 5.8). The
other two AAs are associated with the inclusion of the application action. The
module Action1_Model is an abstract aspect that implements what is expressed in
the model, while it does not implement the open method. The module Action1 is
the AA that completes Action1_Model, and is intended to be manually changed,
namely the body of the open method action(). The last part of Action1_Model

is an advice that captures the write accesses to the attribute action of Exit1, and
after the object reference is changed, it sets the static variable exit of Action1 to
point at the same object. Using this mechanism, the exit action is available to
be used in the manually written code, without the need of understanding code
that can be obtained from the models. The AA Action1 is able to access the exit
action, as exemplified in the code.

124

5.4 DORI Example

public aspect Exit1 extends Exit {
 public pointcut application() : target(Application1);
}

@OpenConcept
public abstract aspect ApplicationAction extends Action {
 private String name;

 @Attributes
 public ApplicationAction(String name) {
 this.name = name;
 }

 @OpenMethod
 public abstract void action();

 class OpenAction extends AbstractAction {
 public OpenAction() {
 setText(name);
 }
 public void run() {
 action();
 }
 }

 protected IAction createAction() {
 return new OpenAction();
 }
}

<<instance of>>

:Application
name="App"

:ApplicationAction
name="A1"

@AccessibleConcept
public abstract aspect Exit extends Action {
 @AccessibleObject
 IAction action;

 protected IAction createAction() {
 action = ActionFactory.createExit();
 return action;
 }
}

:Exit <<accesses>>

public abstract aspect Action1_Model extends ApplicationAction {
 public Action1_Model() {
 super("A1");
 }

 public pointcut application() : target(Application1);

 IAction around() : set(IAction action) && target(Exit1) {
 Action1.exit = action;
 }
}

<<accessible>>
Exit

<<abstract>>
Actionname : string

Application *

pointcut application()

public aspect Action1 extends Action1_Model {
 static IAction exit; // automatic

 public void action() {
 // Something...
 // And exit
 exit.run();
 }
}

Contains what is not
given by the model

<<open>> action()
name : string

<<open>>
ApplicationAction

Figure 5.13: Expressing open concepts in DORIs.

125

5. DOMAIN-ORIENTED REUSE INTERFACES

5.4.2.6 Directed associations

In the given domain variability model we can see two examples of directed asso-
ciations: the many-to-one association between menu action (source) and action

(target), and the many-to-many association between toolbar (source) and action

(target). Using an Association Object (Subsection 4.9) for representing a
directed association is an adequate solution. The two cases of many-to-one and
many-to-many associations are discussed next.

Figure 5.14 presents the DORI module MenuAction for expressing the concept
of menu action and the association with action. The many-to-one association
is declared at the pointcut action(). Using method execution capturing as in
previous examples, the aspect stores the object of type IAction created by create-

public aspect MenuAction1 extends MenuAction {
 public pointcut action() : target(Maximize1);
 public pointcut menu() : target(Menu1);
}

@Concept
public abstract aspect MenuAction extends MenuItem {
 private IAction action;

 @Association(concept="Action",mult="1")
 public abstract pointcut action();

 after() returning(IAction a):
 within(Action+) && action() &&
 execution(IAction createAction()) {
 action = a;
 }

 protected void addItem(IMenuManager parent) {
 parent.add(action);
 }
}

<<abstract>>
Action

<<abstract>>
MenuItem

MenuAction

1

<<instance of>>

pointcut action()

:Maximize :Menu
name="M1"

:MenuAction

Maximize

name
Menu1..*

pointcut menu()

Figure 5.14: Expressing many-to-one associations in DORIs.

126

5.4 DORI Example

Action() of the DORI module Action. MenuAction is an extension of MenuItem,
and the required implementation of addItem() plugs the stored action in the par-
ent menu. The fragment of the domain variability model shows the relation of
the concept MenuAction with the other concepts introduced previously.

In the bottom part of Figure 5.14 we can see an instance of the concepts and
the AA that implements the inclusion of themaximize action inmenu “M1” (intro-
duced in Figure 5.9). Analogously to all the extensions of MenuItem, the pointcut
menu() composes the menu action in the menu. The maximize action (introduced
in Figure 5.11) becomes associated with the menu due to the definition of the
pointcut action().

Many-to-many associations can be expressed in DORIs analogously to many-
to-one associations. However, in case ordering is required, the solution may be-
come problematic. Consider the case of the toolbar, which defines an unordered
many-to-many association with the action concept. Despite the fact that in a
general-purpose GUI framework it would make sense for this association to be
ordered, let us assume that it is the framework that orders the actions in the
toolbar according to some criteria.

Figure 5.15 presents a DORI module for expressing the toolbar concept. Re-
garding the capturing of actions, it is similar to the previous example, except
that the multiplicity of the association represented by the pointcut actions() is
defined to be “one or more”. All the captured actions are stored in a list and
used when defining the method fillToolBar(). The figure presents an application
model where the toolbar, containing both the exit and maximize actions, is in-
cluded as part of the application “App” (introduced in Figure 5.8). The toolbar
is composed by defining the pointcut application() on the AA Application1, while
the actions become associated by defining the pointcut actions() on the AAs Exit1
(introduced in Figure 5.13) and Maximize1 (introduced in Figure 5.11).

If this association would have to be ordered, the problem of implementing it
using this type of solution is that there is no mechanism for defining the order of
the several actions defined in the pointcut actions(). However, a many-to-many
association from a source to a target concept can be converted into a composite
association of a new concept in the source concept, plus a many-to-one association
from the new concept to the target concept. For instance, in this example we

127

5. DOMAIN-ORIENTED REUSE INTERFACES

could consider a new concept toolbar action, as a child of toolbar, that defines an

association with a single action. Figure 5.16 illustrates this issue by presenting

the original concepts and the solution based on introducing the new concept.

When expressing such solution in a DORI, toolbar actions are children of toolbar

and can be ordered as explained in Subsection 5.4.2.2, while the many-to-one

association to action can be implemented as in the previous example.

@Concept
public abstract aspect ToolBar {

 @PartOf(concept="Application",mult="0..1")
 public abstract pointcut application();

 after(IToolBarManager toolbar):
 within(Application+) && application() && args(c) &&
 execution(void fillToolBar(IToolBarManager)) {
 for(IAction a : actions)
 toolbar.add(a);
 }

 List<IAction> actions = new ArrayList<IAction>();

 @Association(concept="Action",mult="1..*")
 public abstract pointcut actions();

 after() returning (IAction a) :
 within(Action+) && actions() &&
 execution(IAction createAction()) {
 actions.add(a);
 }
}

<<abstract>>
ActionToolBar 1..*

0..1

name
Application

*
*

public aspect ToolBar1 extends ToolBar {
 public pointcut application() : target(Application1);
 public pointcut actions() : target(Exit1) || target(Maximize1);
}

:Application
name="App"

:ToolBar

:Maximize

<<instance of>>

pointcut application()

:Exit

pointcut actions()

MaximizeExit

pointcut application()

Figure 5.15: Expressing many-to-many associations in DORIs.

128

5.5 Discussion

<<abstract>>
Action

ToolBar

1..*

0..1
name : string
Application

ToolBarAction <<abstract>>
Action

ToolBar

1

0..1
name : string
Application

1..*

{ordered}

* *{ordered}

Figure 5.16: Converting a many-to-many association into a composite association
plus a many-to-one association.

5.5 Discussion

This chapter explained how the several conceptual modeling constructs can be
used in a DORI to express the concepts of a domain variability model. In ad-
dition to the conventional modeling constructs, special kinds of constructs were
considered for dealing with the integration of manual and generated code.

The proposed mechanisms to represent the domain variability model naturally
have limitations and restrictions, as for instance, the presented problem of defin-
ing ordered many-to-many associations. The way to represent concepts, their
attributes and relationships, is not flexible. Each of these elements has a single
and uniform mechanism for representing it. With respect to the concept instances
represented in AAs, they are also represented uniformly. A concept instance is
represented by a module that inherits from an SA (that represents the concept),
an attribute value is represented by an argument passed to the constructor of
the SA, a composite association link is represented by a pointcut that matches
the parent concept instance, and a directed association link is represented by a
pointcut that matches the target concept instances. Such uniformity enables the
existence of a generic procedure for transforming application models into AAs,
applicable to every DORI that adheres to the given representation of concepts
and concept instances. By having a generic transformation, a DORI is the only
artifact that one has to implement in order to have a working F-DSL. Chapter 6
addresses this issue with more detail.

129

Chapter 6

Automated Domain-Specific
Modeling Languages

This chapter addresses the construction of DSLs based on DORIs, focusing on the
specific case of domain-specific modeling languages (DSM Forum, 2007) (DSMLs).
Section 6.1 outlines the components of a tool for building DORI-based DSLs. Sec-
tion 6.2 goes into detail on a concrete solution for building DORI-based DSMLs.
Section 6.3 presents ALFAMA, which is a tool prototype that realizes the pro-
posed solution. Finally, Section 6.4 concludes the chapter by discussing the ad-
vantages of using a language workbench such as ALFAMA.

6.1 Tool Support for Building DSLs using DORIs

Chapter 5 introduced the concept of DORI. The framework usage support pro-
vided by a DORI may be regarded as an internal DSL (Fowler, 2008) (also known
as embedded DSLs (van Deursen et al., 2000)). An internal DSL is an extension
of a base language with domain-specific abstractions using the syntactic mech-
anisms available in that language. Internal DSLs have the advantage of using
the compiler of the base language “as is”, but they lack the advantages of exter-
nal DSLs (Fowler, 2008), which can have custom syntax, dedicated editors, and
domain-specific constraints. External DSLs are typically built using a technology
that suits that purpose. Table 6.1 summarizes example DSL technologies and
their artifacts for defining the application models.

131

6. AUTOMATED DOMAIN-SPECIFIC MODELING LANGUAGES

Technology DSL Definition Application Model
EMF (Eclipse Foundation, 2007d) Meta-model Object model

UML (OMG, 2004) Structural Profile Class diagram
XML (W3C, 2008a) Schema XML file

YACC (Johnson, 1979) Grammar Text file

Table 6.1: Examples of suitable technologies for developing DSLs.

Besides being an internal DSL, a DORI is beneficial for developing an external
F-DSL. The abstract syntax of the F-DSL is defined by the domain variability
model that is expressed in a DORI as a conceptual model. Such a conceptual
model can be translated into a DSL definition using a specific technology (exam-
ples in Table 6.1). In turn, application models described using such a technology
have to be transformed into DORI-based code (i.e. AAs). The examples given
throughout Section 5.4 have shown how straightforward this task is, if the DORI
modules are implemented as proposed. The DSL definition and transformation
of application models can be automated by a tool. Figure 6.1 presents the com-
ponents that are necessary to realize such a tool.

Base Framework

instance of

Domain
Variability

Model
EXTRACTOR DSL

GENERATOR

CODE
GENERATOR

specific to AOP language

specific to DSL technology

specific to both AOP language and DSL technology

instantiate

output

output

output

framework-specific and provided manually

DORI

Application Model

input input

input

DSL Definition

AA

Figure 6.1: Components of a tool for building DORI-based DSLs.

The following list details the role of each component:

• Extractor. The role of this component is to extract the domain variability
model that is expressed in the DORI modules. This model should be de-
fined in a format that is suitable for representing conceptual models. The

132

6.1 Tool Support for Building DSLs using DORIs

component is specific to the AOP language that is used to implement the
DORI, while it can be used for several DORIs that are implemented in that
language and that adhere to the same conventions.

• DSL Generator. This component takes a domain variability model as input
and produces a DSL definition based on a certain technology. Therefore,
this component is specific to a DSL technology, while it is independent from
the AOP language, given that it deals with an implementation-independent
domain variability model. In certain cases, the extractor may also fulfill
the role of the DSL generator. This happens when the domain variability
model is represented in a technology suitable for DSL implementation (e.g.
EMF, Eclipse Foundation, 2007d). If that is the case, the domain variability
model is the DSL definition itself.

• Code Generator. This component takes as input application models ex-
pressed in a certain DSL and produces the AAs that constitute the appli-
cation code. Therefore, it is specific to both an AOP language and a DSL
technology. However, its reusability is still high, given that the same code
generator can be used in all situations that have in common the AOP lan-
guage and the DSL technology. The code generator depends on the DSL
generator, in the sense that it is built according to certain assumptions
about the way the DSL generator defines the languages.

Recall that for fixed AOP and DSL technologies, all the artifacts presented in
Figure 6.1 except the DORI and application models, are either generic (Extrac-
tor, DSL Generator, Code Generator) or they can be obtained automatically by
a tool (domain variability model, DSL definition, AAs). By using a tool with the
proposed components, the construction of an F-DSL relies solely on the DORI,
while a framework-based application can be produced just by giving an applica-
tion model.

The following list presents concrete scenarios using different technologies:

1. A tool composed of an extractor for DORIs written in AspectJ that out-
puts EMF models representing the domain variability models, and a code
generator that transforms instances of EMF models into AAs written in

133

6. AUTOMATED DOMAIN-SPECIFIC MODELING LANGUAGES

AspectJ. This tool is a case where the domain variability model is itself the
DSL definition.

2. A tool composed of the same extractor as in (1), a DSL generator that
produces XML Schemas as the grammar for application models expressed
in XML files, and a code generator that transforms XML files into AAs
written in AspectJ.

3. A tool composed of an extractor for DORIs written in AspectC++ (Spinczyk
et al., 2002), the same DSL generator as in (2), and a code generator that
transforms XML files into AAs written in AspectC++.

In order to have a proof-of-concept of the proposed tool, the work in this
dissertation has concentrated on scenario (1), which is detailed in the next section.

6.2 Building DSMLs using DORIs

The use of meta-model-based DSLs is promoted by the model-driven engineering
trend. Such DSLs are often referred to as domain-specific modeling languages
(DSMLs). The work in this dissertation investigated more deeply the construction
of DORI-based DSMLs.

6.2.1 Overview

The Extractor component discussed previously generates a representation of a
domain variability model from a DORI. Meta-modeling technologies such as EMF
are an appealing means for realizing a DSML. They allow to define languages
using a rich set of modeling constructs that is equivalent to conceptual modeling
with respect to expressiveness. Language definitions are given in terms of meta-
models. A model that conforms to a meta-model is a valid set of instances of the
concepts described in the meta-model. A meta-model can be extended by another
meta-model. The modeling constructs that can be used to define a meta-model
are also given by a meta-model — the meta-meta-model.

The advantage of meta-modeling technologies with respect to the proposed
tool is that a domain variability model is itself the DSL definition. The domain

134

6.2 Building DSMLs using DORIs

variability model is a conceptual model, which assumes the role of the meta-model

that defines the DSML.

The Code Generator component takes as input instances of the extracted

meta-models, which all should have the same basic structure. Moreover, given

that open and accessible concepts are common to all DSMLs, it makes sense

to factor out such commonality. In order to do so, we can have a common

meta-model which is extended by all the meta-models that are extracted by the

Extractor component. The common meta-model is an instance of the meta-meta-

model. The extracted meta-models, given that they are extensions of the common

meta-model, are also instances of the meta-meta-model. In turn, the application

models are instances of the extracted meta-models, and are the input for the code

generator.

Figure 6.2 depicts the several elements of the solution and how they are re-

lated, indicating the figures that relate to the elements. The remainder of this

section will present the meta-meta-model (Figure 6.3), the common meta-model

(Figure 6.4), the algorithm performed by the Extractor component (Figure 6.5),

an example of an extracted meta-model that extends the common meta-model

(Figure 6.6), an example application model that is an instance of the extracted

meta-model (Figure 6.7), and the algorithm performed by the Code Generator

component (Figure 6.8).

Extractor /
DSL Generator

Code Generator

meta-model
(domain variability model)

meta-meta-model
(e.g. EMF)

application
model

common
meta-model

<<extends>>

<<instance>>

<<instance>>

output

input

(Fig. 6.4)

(Fig. 6.3)

(Fig. 6.6 [example])(Fig. 6.5)

(Fig. 6.8) (Fig. 6.7 [example])

Figure 6.2: Overview of the proposed solution for building DORI-based DSMLs.

135

6. AUTOMATED DOMAIN-SPECIFIC MODELING LANGUAGES

6.2.2 Meta-modeling

Figure 6.3 presents a class diagram describing a meta-model for defining meta-

models. It represents a basic subset of modeling constructs that are available in

meta-modeling technologies (e.g. EMF). A meta-model is composed by classes,

which have their name, might be abstract, and might inherit from a super class.

A class may contain several attributes, each one identified by a name and with

an associated primitive type (e.g. string, int, etc). A class may also contain

associations with other classes. An association has a multiplicity, it may be

ordered, and it may represent a containment (composite association). Modeling

elements such as classes and associations may contain annotations that store

string values. The given modeling constructs are the ones that are supported by

the proposed approach. Every DSML (meta-model) that is obtained from the

Extractor / DSL Generator component conforms to the given meta-meta-model.

name : string
abstract : bool

Class
name : string

Attribute
*

super

*multiplicity : string
ordered : bool
containment : bool

Association
*

1

<<abstract>>
PrimitiveType

String Int ...

1

type

type

value : string
Annotation

*
*

Figure 6.3: Meta-model for defining meta-models (meta-meta-model).

In Chapter 5, Figure 5.3 presented the modeling constructs that can be used

to express concepts in a DORI. Such modeling constructs are closely related to the

elements of Figure 6.3. The meta-model elements Class and Attribute are suitable

for representing the modeling constructs Concept, OpenConcept, PublicConcept,

AccessibleConcept, and AbstractConcept (implies the attribute abstract to be true).

The meta-model element Association is suitable for representing the modeling

constructs DirectedAssociation and CompositeAssociation (implies the attribute

containment to be true).

136

6.2 Building DSMLs using DORIs

6.2.3 Extraction of meta-models from DORIs

Figure 6.4 presents the common meta-model, which is an instance of the meta-
meta-model given in Figure 6.3. The Concept is the basic unit, instantiating
the element Class of the meta-meta-model. The classes are represented in UML-
like class boxes, the class names in the top compartment, and the stereotype
<<abstract>> denotes that the class is abstract. All elements of the extracted
meta-models inherit directly or indirectly from Concept. The three special kinds of
concepts are represented in their own class, namely PublicConcept, AccessibleCon-
cept, and OpenConcept. A public concept has a filename attribute for defining
the name of the file that is generated. An accessible concept is a concept that
can be accessed by open concepts. An open concept may contain several Access
objects to accessible concepts. A variable in the open module with name given
by varname is going to point at the accessible object.

varname : string
Access

<<abstract>>
Concept

<<abstract>>
OpenConcept

<<abstract>>
AccessibleConcept*

1

filename : string

<<abstract>>
PublicConcept

target

Figure 6.4: Common meta-model which is extended by all the meta-models.

Figure 6.5 presents an algorithm in pseudo-code for obtaining a meta-model
from a DORI. The algorithm is rather simple, since all the necessary information
is explicitly represented in the DORI modules. Each DORI module will have a
corresponding class. If the DORI module does not inherit from another DORI
module, its class will inherit from Concept, PublicConcept, OpenConcept, or Ac-

cessibleConcept, according to its kind. Otherwise, its class will inherit from the
class corresponding to the DORI module from which it inherits. In the case of
open concepts, the signatures of its open methods are attached to their class.

137

6. AUTOMATED DOMAIN-SPECIFIC MODELING LANGUAGES

Input: DORI (set of DORIModule)
Output: Meta-model (set of Class)
foreach DORIModule dmod do

Create Class c (getName(dmod));
c.setAbstract(hasAbstractConceptAnnotation(dmod));
if hasOpenConceptAnnotation(dmod) then

c.addSuperClass(OpenConcept);
c.attachAnnotation(getOpenMethods(dmod));

end
else

if hasAccessibleConceptAnnotation(dmod) then
c.addSuperClass(AccessibleConcept);

end
if hasPublicConceptAnnotation(dmod) then

c.addSuperClass(PublicConcept);
end

end
foreach Attribute att in getAttributesAnnotation(dmod) do

c.addAttribute(att.getType(),att.getName());
end

end
foreach Class c do

DORIModule dmod = getDORIModule(c);
if extendsDORIModule(dmod) then

c.addSuperClass(getClass(dmod.getSuper()));
end
if hasNoSuperClass(c) then

c.addSuperClass(Concept);
end
foreach PartOfAnnotation ann in dmod.getPartOfAnnotations() do

Class parent = getClass(ann.getConcept());
Create Association ca (c, ann.getMultiplicity(), ann.isOrdered());
ca.setContainment(true);
ca.addAnnotation(ann.getPointcut());
parent.addAssociation(ca);

end
foreach AssociationAnnotation ann in dmod.getAssociationAnnotations()
do

Class target = getClass(ann.getConcept());
Create Association a (target,ann.getMultiplicity());
a.setContainment(false);
a.addAnnotation(ann.getPointcut());
c.addAssociation(a);

end
end

Figure 6.5: Algorithm for obtaining a meta-model from a DORI.

138

6.2 Building DSMLs using DORIs

Composite and directed associations are defined according to the information in
the annotations of DORI modules.

Figure 6.6 shows the meta-model that is obtained by applying the algorithm
given in Figure 6.5 to the DORI modules given throughout Section 5.4. The
classes of the common meta-model are represented in gray, and the class Access
(containment of OpenConcept) is not visible for reducing cluttering. Next sub-
section addresses the Code Generator component, which accepts instances of the
extracted meta-models as input.

name : string
Application

<<abstract>>
Action

*

*

Exit

name : string
Menu

Maximize

1

<<abstract>>
MenuItem

MenuAction
name : string
SubMenu

1..*
{ordered} {ordered} {ordered}

ToolBar 1..*
0..1

*

name : string
ApplicationAction

<<abstract>>
Concept

<<abstract>>
OpenConcept

<<abstract>>
AccessibleConcept

application()application()

action()

actions()

menu()
submenu()

application()

public void action();

filename : string

<<abstract>>
PublicConcept

Figure 6.6: Meta-model obtained from the DORI given in Section 5.4, by applying
the algorithm of Figure 6.5.

6.2.4 Generation of DORI-based code

As explained previously, the Code Generator component is generic, in the sense
that it accepts instances of any meta-model extracted by the Extractor com-

139

6. AUTOMATED DOMAIN-SPECIFIC MODELING LANGUAGES

ponent. The Code Generator component depends on the way meta-models are

extracted because it has to be aware of how certain data is represented, as for

instance the pointcut names.

The code generator takes as input application models and produces applica-

tion code, which is composed of AAs. Figure 6.7 presents an application model,

which is an instance of the meta-model of Figure 6.6, describing the example

application introduced throughout Section 5.4.

:Application
name="App"

:Menu
name="M1"

:Exit :Maximize

:SubMenu
name="SM1"

:SubMenu
name="SM2"

:ApplicationAction
name="A1"

:MenuAction

:ToolBar

:Access
varname="exit"

Figure 6.7: Application model (instance of the meta-model of Figure 6.6) used in
the example of Section 5.4.

Figure 6.8 presents the algorithm of the generic code generator in pseudo-

code. For each object in the application model there will be a corresponding AA.

The name of the AAs (getUniqueName()) is given in the attribute filename in the

case of a public concept or it is automatically generated otherwise. The name of

the DORI module that an AA has to inherit from is equal to the name of the

object’s class. In the case of an open concept, an additional AA is created (the

open module). Each attribute value is translated to an argument in the call to the

constructor of the DORI module. Each containment association link results in a

pointcut definition in the AA representing the child object. If an open module has

accesses, it is augmented with a static variable with a type equal to the type of

the accessible object and a name equal to the value of the attribute varname, and

accordingly, the AA is augmented with an advice definition for setting the static

variable to point at the accessible object. Each non-containment association link

results in a pointcut definition in the AA. The examples of AAs given throughout

Section 5.4 can be obtained using the given algorithm.

140

6.2 Building DSMLs using DORIs

Input: Application model (set of Object)
Output: Application code (set of AA)
foreach Object obj do

Create AA aa;
aa.setName(getUniqueName(obj));
aa.setSuperModule(getClass(obj).getName());
if isOpenConcept(obj) then

aa.setAbstract(true);
Create AA openaa;
openaa.setName(obj.filename);
openaa.setSuperModule(aa);
openaa.generateOpenMethodSkeletons();

end
foreach AttributeValue value in obj.getAttributeValues() do

aa.addArgumentInSuperConstructorCall(value);
end
foreach AssociationLink ca in obj.getContainmentAssociationLinks() do

Object child = ca.getTarget();
if isAccess(child) then

AccessibleObject ao = child.getTarget().getAccessibleObject();
openaa.addStaticVariable(ao,child.varname);
aa.addAdviceForStaticVariable(ao,child.varname);

end
else

String pointcut = getPointcutFromAnnotation(ca);
child.addPointcutDefinition(pointcut,aa.getName());

end
end
foreach AssociationLink da in obj.getNonContainmentAssociationLinks()
do

Object target = da.getTarget();
String pointcut = getPointcutFromAnnotation(da);
aa.addPointcutDefinition(pointcut,getUniqueName(target));

end
end

Figure 6.8: Algorithm for generating application code from an application model.

141

6. AUTOMATED DOMAIN-SPECIFIC MODELING LANGUAGES

6.3 ALFAMA Tool

A language workbench, as referred by Fowler (2008), is an IDE (Integrated De-
velopment Environment) for building external DSLs. Language workbenches are
especially useful when the DSLs are based on meta-modeling (DSMLs) and have
custom editors for developing application models (e.g. graphical syntax). Exam-
ples of language workbenches are for instance MetaEdit+ (MetaCase, 2008) and
Microsoft DSL Tools (Greenfield & Short., 2005).

As a proof-of-concept of a tool for automating the development of DORI-
based DSMLs, a language workbench named ALFAMA (Automatic DSLs for
using Frameworks by combining Aspect-oriented and Meta-modeling Approaches)
was developed as a set of plugins for the Eclipse workbench (Eclipse Foundation,
2007b). The tool supports AspectJ (Eclipse Foundation, 2007a) as the AOP
language and EMF for the DSL definitions. The following are the

The following are the three main plugins which constitute ALFAMA:

• Meta-model extractor. This component generates EMF models from pack-
ages containing DORI modules. The classes of the extracted meta-models
inherit from the classes of a common meta-model (as the one given in Figure
6.4).

• Generic code generator. This component generates AAs from instances
of the extracted meta-models. It uses the EMF reflection capabilities for
accessing the meta-model while processing the application models.

• Integration plugin. This component realizes the integration of the other
two components with the Eclipse workbench. It includes the actions for
extracting meta-models, generating code from application models, etc, plus
a specific editor for application models.

Figure 6.9 shows a screenshot of the ALFAMA tool from the perspective
of domain engineering. In order to develop the DSML, domain engineers have
to implement the DORI for the base framework. The tool enables a one-shot
extraction of the meta-model representation into an EMF model. Such a model
can be visualized in a graphical way, as shown in the figure. Therefore, while

142

6.3 ALFAMA Tool

implementing the DORI, the developer may constantly check how the DSML is
taking shape. The graphical visualization of the DSML concepts is useful both
in terms of understandability and complexity management. The DSML concepts
in the graphical model can be traced to the DORI modules that represent them
(one-to-one mapping).

On the left-hand side of the figure we can see the package explorer with the
package rcpspecaspects containing several DORI modules for the Eclipse RCP
framework. These modules are edited normally using the AspectJ editor. For
instance, in the bottom part of the right-hand side we can see the DORI module
Action opened in the editor. On the right-hand side of the upper part we can
see a diagram representing the meta-model that is extracted from the package of
DORI modules.

Figure 6.10 shows a screenshot of the ALFAMA tool from the perspective of
application engineering using the generated DSML. The tool provides a generic
tree-view editor for application models. Such an editor represents the containment
of concept instances by nesting the items in the tree nodes. The editor shows
icons for the concept instances, if they are specified in the DORI modules. The
attribute values of the concept instances are edited in a property list. With
an application model, the tool enables a one-shot generation of the AAs that
implement the application. The generated code is divided in two sets: public and
hidden. As the names suggest, the public set contains modules that are intended
to be used externally or manipulated (open modules), whereas the hidden set
contains modules that are not meant to be seen, touched, or understood by an
application developer. In the case of instances of open concepts, the application
developer may navigate to the open module in order to complete it manually.

On the right-hand side of the upper part of the figure we can see an application
model (instance of the meta-model of Figure 6.9) describing an application based
on Eclipse RCP. On the left-hand side we can see a package containing the code
that was generated from the application model, divided in two packages (public
and hidden). On the right-hand side of the bottom part we can see the open
module AddText opened in the editor. The marks in the figure highlight how the
access declarations on the application model affect the open module. The figure
also shows the screenshot of the application that was generated from the model.

143

6. AUTOMATED DOMAIN-SPECIFIC MODELING LANGUAGES

M
et

a-
m

od
el

ov

er
vie

w

DO
RI

M
et

a-
m

od
el

(d
om

ai
n

va
ria

bi
lity

m

od
el

)

DO
RI

 m
od

ul
e

Figure 6.9: Domain engineering with ALFAMA.

144

6.3 ALFAMA Tool

Pu
bl

ic
AA

s

Hi
dd

en
 A

As

Co
nc

ep
t i

ns
ta

nc
e

pr
op

er
tie

s

O
pe

n
m

od
ul

e

G
en

er
at

ed

ap
pl

ica
tio

n

Ap
pl

ica
tio

n
m

od
el

Figure 6.10: Application engineering with ALFAMA.

145

6. AUTOMATED DOMAIN-SPECIFIC MODELING LANGUAGES

6.4 Discussion

This chapter addressed the automated development of F-DSLs using DORIs, fo-
cusing on the case of DSMLs. The ALFAMA tool stands as a proof-of-concept
that such an approach is feasible. DSMLs engineered with a DORI are thus an
alternative to conventional generative approaches where the meta-models are de-
fined externally to the framework and a code generator for processing application
models is manually developed.

When compared to conventional approaches, DORI-based DSML construction
is advantageous regarding maintainability. The following scenarios illustrate such
advantages:

• Addition of new DSML concept. In a conventional solution, the concept has
to be added in the meta-model and the code generator has to be modified to
support the new concept. In a DORI-based solution, a new DORI module
has to be developed. Moreover, due to inheritance between DORI modules,
it is possible to have design solutions where new DSML concepts can be
developed without the need of understanding any other existing modules
(e.g. the actions in the example framework).

• Removal of DSML concept. In a conventional solution, the concept has to
be removed from the meta-model and the code generator has to be modified
to remove the functionality associated with the concept. In a DORI-based
solution, there is no need to understand any DORI modules, as long as one
knows which is the module that represents the concept. The DORI module
simply has to be excluded from the meta-model extraction.

• DSML partitioning. If one wants to partition the DSML, i.e. to have
variations of the language that include subsets of the available concepts,
a conventional solution would require to build the generator according to
this requirement. Otherwise, the task would be very laborious. In a DORI-
based solution, a subset of self-contained DORI modules can be used to
extract a meta-model representing a subset of the DSML.

146

6.4 Discussion

Despite the fact that ALFAMA was developed as an “independent” language
workbench that supports a new way of developing DSMLs for frameworks, the ap-
proach itself is not in any way incompatible with existing language workbenches,
such as MetaEdit+ or Microsoft DSL Tools. As a matter of fact, the proposed
language workbench could be developed as an extension/plugin of these tools.
An Extractor component would output meta-models based on the proprietary
meta-model formats of the tools, while a Code Generator component would be
developed against those meta-model formats using the tool-provided languages
for building code generators.

The development of domain-specific concrete syntax, for instance in the form
of graphical notation, is not addressed by ALFAMA. This issue can be handled
independently, for instance using GMF (Graphical Modeling Framework, Eclipse
Foundation, 2007e) if the meta-models are in EMF, or using the facilities of the
existing language workbenches when having the meta-models in their proprietary
format.

147

Chapter 7

Evaluation

This chapter presents two case studies that were used to investigate the practi-
cal applicability of both framework specialization aspects and DORIs. Section
7.1 revisits the JHotDraw (SourceForge, 2006) framework presented on Chap-
ter 2, focusing on the modularity enabled by specialization aspects. Section 7.2
presents a case study on the Eclipse Rich Client Platform (RCP) framework
(McAffer & Lemieux, 2005), focusing on building a DORI-based DSML using
ALFAMA. Finally, Section 7.3 discusses methodological risks and limitations of
the approaches.

7.1 Revisiting JHotDraw

JHotDraw was the first framework that served as a case study. This section
focuses on comparing conventional JHotDraw instantiation with the use of spe-
cialization aspects.

7.1.1 Specialization aspects / DORI

JHotDraw was the first real framework where the feasibility of specialization
aspects (SAs) was tested. Such an experiment was done when the concept of
SAs was at an immature stage and before the concept of DORI was elaborated.
However, here the results of having SAs for JHotDraw are presented according
to the current maturity stage, and making use of the DORI concept.

149

7. EVALUATION

A set of SAs was successfully developed for JHotDraw, covering all the con-
cepts listed in Table 2.1. The SAs did not require modifications on the framework,
and all of them are instances of the patterns given on Chapter 4. Based on these
SAs, a DORI was developed for JHotDraw.

Domain variability model

Figure 7.1 presents a simplified domain variability model expressed by the JHot-
Draw DORI. From the model one can see which are the SAs, given that each
concept has a corresponding DORI module, and in turn, each DORI module is
implemented as an SA.

name
DrawApplication

text
undo

CreationTool

<<open>>
Node

<<open>>
Connection

Valid
Connection

<<abstract>>
Figure
* *

source1

target1

1

name
Menu*

name

<<open>>
Command*

*

Rectangle Ellipse Line... ...

CopyCommand ...

ConnectionToolNodeToolnode

1
connection

Figure 7.1: Domain variability model for JHotDraw (simplified).

When introducing JHotDraw on Chapter 2, Table 2.1 listed a set of concepts
for the purpose of exemplifying the development of a DSL. For each of those
concepts there was a DORI module addressing it, with the following exceptions:

• Default and application-specific node figures were merged in the NodeFigure
concept, which is open for supporting application-specific figures. The de-
fault node figures are represented by concepts that inherit from NodeFigure
(e.g. Rectangle).

150

7.1 Revisiting JHotDraw

• Default and application-specific connection figures were merged in the Con-
nectionFigure concept, which is open for supporting application-specific con-
nection figures. The default connection figures are represented by concepts
that inherit from ConnectionFigure (e.g. LineConnection).

• An abstract concept Figure was introduced as a generalization of Node-

Figure and ConnectionFigure, given that with respect to their inclusion in
the application and the use of creation tools they are handled in the same
manner.

• The concept CreationTool is abstract, while it has two specializations, Node-
Figure and ConnectionFigure.

• The concept Undo was incorporated as an attribute of CreationTool.

• Valid connections for default and application-specific connection figures
were merged in the ValidConnection concept.

• Default and application-specific commands were merged in the Command

concept, which is open for supporting application-specific commands. The
default commands are represented by concepts that inherit from Command

(e.g. CopyCommand).

Pattern instances

The SAs developed for JHotDraw are instances of the patterns presented in Chap-
ter 4. Table 7.1 lists for each pattern the DORI modules that are applying it.

Pattern JHotDraw Concepts
Composition Hook Method Draw application, Menu
Self-Pluggable Object Creation tool, Undo, Menu, Valid connection
Abstract Self-Pluggable Object Command
Self-Pluggable Type Hierarchy Figure and sub-concepts
Association Object Creation tool, Valid connection

Table 7.1: Pattern instances on the specialization aspects of JHotDraw.

151

7. EVALUATION

7.1.2 Comparison with conventional instantiation

Figure 7.2 depicts the dependencies between the application aspects (AAs) of a
JHotDraw-based application. Given that the order of the menus and creation
tools is relevant in a JHotDraw-based application, aspect precedences had to be
used to explicitly determine the order or the several AAs that implement either
menus or creation tools.

Draw
application

Node Connection

Creation tool

Menu

CommandValid
connection

static dependency
concept instance / application aspect

Figure 7.2: JHotDraw instantiation using specialization aspects.

In contrast to conventional JHotDraw instantiation (depicted earlier in Figure
2.4), the use of SAs has the following consequences:

• Each concept instance is implemented in its own AA, which completely
implements an increment in the application.

• AAs only have static dependencies between them (i.e. the pointcut defini-
tions). An AA does not require in any case the modification or inspection of
other AAs. In the case of conventional instantiation, most of the concepts
require the modification of a class originated by another concept instance.

• The logical dependencies between concept instances are reflected in the
dependencies between the AAs that represent them. For instance, the undo
(9) can be applied on a creation tool (8), and thus, the AA of the former
has a dependency to the AA of the latter. In the case of conventional

152

7.2 Case Study: Eclipse Rich Client Platform

instantiation, one has to modify the main class in order to use undo on
a creation tool. Therefore, the direct mapping of the logical dependency
between concept instances disappears in the implementation.

• Changes in a certain concept instance are localized in the AA which repre-
sents it, so that:

– The concept instance can be removed by not including its AA in compi-
lation. In the case of conventional instantiation, in most cases remov-
ing a concept instance implies invasive modifications on code that is
tangled with code pertaining to other concept instances (e.g. creation
tools (8), undo (9)).

– Changing something in a concept instance (e.g. moving a command
(11-12) from a menu (10) to another) is done solely on the correspond-
ing AA. In the case of conventional instantiation, most of the cases
require modifying other modules that are related to other concept in-
stances.

7.2 Case Study: Eclipse Rich Client Platform

The second case study that was carried out was based on Eclipse RCP, which is
a more complex framework than JHotDraw. This section focuses on comparing
conventional development of a DSML with the development of a DORI-based
DSML.

7.2.1 Framework description

Figure 7.3 illustrates some of the main concepts of an RCP application. An RCP
application is composed by several view parts, which are organized by perspec-
tives. Each view may contain UI elements (SWT widgets) and viewers (e.g. table
viewer). An RCP application may have menus, which can be application menus
(in the menu bar), view menus, or pop-up menus in a viewer. An RCP application
may have a cool bar (equivalent to a tool bar). An RCP application may have

153

7. EVALUATION

several actions whose execution is triggered by menu actions, cool bar actions, or
by other UI elements such as buttons (associating mouse actions).

button (and mouse action)

RCP applicationmenu

menu action

cool bar

perspective

view part

table
viewer

cool bar
action

pop-up menu

view
menu

SWT widgets

Figure 7.3: Screenshot of an application based on Eclipse RCP.

7.2.2 Conventional instantiation

Table 7.2 presents the mechanisms involved in the conventional instantiation of
Eclipse RCP with respect to some of the concepts described in the previous
subsection. This small set of concepts suffices for showing that developing an
RCP-based application implies using all kinds of adaptation mechanisms, as well
as different combinations of them.

154

7.2 Case Study: Eclipse Rich Client Platform

Concept Inheritance Interface Hook Object Parameters
Method Composition

RCP application
√

Perspective
√

View part
√ √

Cool bar
√

Action
√ √ √ √

Menu
√ √ √

Menu action
√

Mouse action
√

Table 7.2: Adaptation mechanisms for example concepts of Eclipse RCP.

7.2.3 Specialization aspects / DORI

The case study on Eclipse RCP was carried out when the concept of DORI was

taking shape, and it evolved along with the approach. A DORI was successfully

developed for Eclipse RCP, covering the concepts described in Subsection 7.2.1.

Eclipse RCP is a relatively extensive framework, and therefore, a set of concepts

had to be selected for the case study. The goal was to have a set of concepts that

are frequently used by applications, and nevertheless, that all the adaptation

mechanisms and modeling constructs could be covered. The ALFAMA tool was

used systematically when developing the DORI, and no modifications on the

Eclipse RCP framework were required.

Domain variability model

Figure 7.4 shows a fragment of the domain variability model that was expressed

in the DORI. The figure shows a screenshot of the meta-model extracted by the

ALFAMA tool. The gray elements represent abstract concepts, and OpenAction is

an open concept. Table 7.3 presents examples where the different DORI modeling

constructs are used.

Pattern instances

Table 7.4 presents examples of pattern instances in the specialization aspects of

the DORI for Eclipse RCP, with respect to the concepts listed in Table 7.2.

155

7. EVALUATION

Figure 7.4: Illustrative fragment of the domain variability model of Eclipse RCP.

156

7.2 Case Study: Eclipse Rich Client Platform

Modeling constructs Eclipse RCP Concepts
Concepts All

Composite associations

(given in parent, child pairs)
RCP application, Perspective
RCP application, View part
Perspective, View place

Ordered composite associations
(given in parent, child pairs)
RCP application, Menu
Menu, Menu item

Abstract concepts Menu item, Action, Viewer element

Multi-parent composite associations
(given in (parent, ...), child pairs)
(RCP application, View part, Viewer element), Menu
(Menu, Submenu), Menu item

Many-to-one directed associations

(given in source, target pairs)
View place, View part
Menu action, Action
Clear table, Table viewer

Many-to-many directed associations (given in source, target pairs)
Mouse action, Action

Open concepts Open action
Accessible concepts Action, Viewer element

Table 7.3: Examples of modeling constructs in the DORI for Eclipse RCP.

Pattern RCP Concepts
Composition Hook Method RCP application, View part
Self-Pluggable Object Perspective, Cool bar
Multi-Context Self-Pluggable Object Menu
Abstract Self-Pluggable Object Action, Mouse action
Association Object Mouse action, Menu action

Table 7.4: Pattern instances in the specialization aspects of Eclipse RCP.

7.2.4 Comparison with conventional code generation

Conventionally, a DSML is realized by having a definition of concepts in a meta-

model, and by implementing a code generator that transforms instances of the

concepts into framework-based code. When using the ALFAMA tool, a DSML

can be realized just by developing a DORI.

This subsection focuses on comparing the construction of DORI-based DSMLs

against conventional approaches. In order to do so, a DSML was developed “con-

ventionally” for a same framework and DSML concepts covered by an equivalent

DORI-based solution. The goal was to have a solution that would allow a fairly

157

7. EVALUATION

thorough comparison with the DORI-based solution. A small fragment of the
Eclipse RCP case study was selected for making the comparison.

The comparison setup went through the following steps:

1. From all the DORI modules that were developed for Eclipse RCP, a self-
contained fragment of those were selected for the comparison. The criteria
was to pick a simple example, which would nevertheless involve all the
modeling constructs and framework adaptation mechanisms.

2. Using ALFAMA, a meta-model was extracted from the fragment of DORI
modules selected in (1). Given that the meta-model is represented in EMF,
Java classes implementing that meta-model can be generated. The meta-
model can be accessed, manipulated, etc, using those classes.

3. Using Java, a conventional generator was implemented against the classes
generated from the extracted meta-model obtained in (2). The generator
was implemented in the most straightforward way, using plain Java and
with no resort to code templates.

7.2.4.1 Meta-model fragment

Figure 7.5 shows the chosen meta-model fragment extracted by ALFAMA. For
the concepts in the meta-model, Table 7.5 presents which modeling constructs
they are using and which adaptation mechanisms are required when transforming
them into framework-based code that uses the conventional reuse interface.

7.2.4.2 Conventional generator in Java

The code generator that was developed accepts as input a set of objects that
is a valid instance of the meta-model given in Figure 7.5. The generator im-
plementation is naïve, in the sense that no variability mechanisms within the
generator were used. Such variability mechanisms, for instance using the Visitor
pattern (Gamma et al., 1995), would enable the generator to evolve more easily
at predefined variation points. However, by including variability mechanisms, the
generator itself would also become some sort of framework that would also have

158

7.2 Case Study: Eclipse Rich Client Platform

Figure 7.5: Meta-model fragment for comparison.

Inheritance Interface Hook Object Parameters
Method Composition

Independent RCP app.
concept

Composite Action, Menu item Menu,
concept Menu Sub menu

Abstract Action Menu item
concept

Multi-parent Menu item
concept

Directed Menu action
association

Open Open action Open action Open action
concept

Table 7.5: Modeling constructs and adaptation mechanisms for the concepts of
Figure 7.5.

to be learned, so that support for new concepts could be added. Moreover, the
generator implementation would be more complex.

The generator was implemented against the same meta-model that was ex-
tracted by ALFAMA (Figure 7.5). Instances of the meta-model (application mod-
els) can be accessed through Java classes that implement the meta-model. Using
such classes is intuitive. For each meta-model class there is a corresponding Java
class. Such class has methods for accessing attributes, contained objects, and
directed associations. As an example of accessing an attribute, Menu.getName()

159

7. EVALUATION

would return the name attribute value. As an example of accessing contained ob-
jects, Menu.getMenuitem() returns references to the contained MenuItem objects.
Finally, as an example of accessing a directed association, MenuAction.getAction()

returns a reference to the associated Action object.

Figure 7.6 presents (a) a sample application model using the concepts of Figure
7.5 (visualized in ALFAMA), (b) the reuse interface fragment that is relevant for
the concepts of the application model, and (c) application code that implements
the application model using the reuse interface fragment. The application code is
what the developed generator outputs for the application model. The remainder
of this subsection presents the generator implementation and compares it with
the DORI. Fragments of the conventional generator are introduced throughout
the several subjects of comparison. The DORI modules for the given fragment of
concepts were already presented throughout Chapter 5.

7.2.4.3 Modularity

In order to compare the modularity of the conventional generator and the DORI,
the generation of the main application class is used as an example. Figure 7.7
presents the part of the generator that handles this issue. This generator part is
actually the main generator class.

The generator can be instantiated with an RCPApplication object and the
name of the main application class to be generated. The method generate()

returns a list of strings, each one containing one generated application module.
The hash table actionVarsTable stores the variable names that are assigned to the
several actions. This is necessary because the variables referencing actions have
to be shared among the hook methods makeActions(..) and fillMenuBar(..). The
methods generateMakeActions() and generateFillMenuBar() handle these two hook
methods, and are introduced ahead.

The generator parts for handling the actions and the menus necessarily de-
pend on the generator part that handles the main class. This is due to the fact
that both actions and menus entail a method to be implemented in the main class.
Moreover, the generator part that handles the menu actions necessarily depends

160

7.2 Case Study: Eclipse Rich Client Platform

(a) Application model

makeActions(IBarAdvisor) : void
fillMenuBar(IMenuManager) : void

<<interface>>
IApplication

register(IAction) : void

<<interface>>
IBarAdvisor

run() : void

<<interface>>
IAction

<<abstract>>
AbstractAction

add(IAction) : void
add(IMenuManager) : void

name
MenuManager

run() : void

Quit

createQuit() : Quit

ActionFactory

<<interface>>
IMenuManager

(b) Reuse interface fragment

1 pub l i c c l a s s Sample implements I A p p l i c a t i o n {
2 p r i v a t e s t a t i c I A c t i o n a c t i o n0 ;
3 p r i v a t e s t a t i c I A c t i o n a c t i o n1 ;
4
5 pub l i c vo id makeAct ions (IBa rAdv i s o r b) {
6 a c t i o n1 = new Tes tAct i on () ;
7 b . r e g i s t e r (a c t i o n 1) ;
8 a c t i o n0 = Ac t i onFac to r y . c r e a t eQu i t () ;
9 b . r e g i s t e r (a c t i o n 0) ;

10 }
11
12 pub l i c vo id f i l lMenuBa r (IMenuManager m) {
13 MenuManager menu0 = new MenuManager ("Menu") ;
14 m. add (menu0) ;
15 menu0 . add (a c t i o n 0) ;
16 MenuManager submenu0 = new MenuManager ("SubMenu") ;
17 menu0 . add (submenu0) ;
18 submenu0 . add (a c t i o n 1) ;
19 }
20 }
21
22 pub l i c c l a s s Tes tAct i on extends Abs t r a c tAc t i o n {
23 pub l i c vo id run () {
24 // TODO
25 }
26 }

(c) Application code

Figure 7.6: Conventional code generation for the fragment of concepts.

161

7. EVALUATION

1 pub l i c c l a s s Conven t i o na lGene r a t o r {
2 p r i v a t e RCPAppl i cat ion app ;
3 p r i v a t e S t r i n g _c la s s ;
4 p r i v a t e Hashtab le<Act ion , S t r i ng > ac t i onVa r sTab l e ;
5 p r i v a t e S t r i n gB u i l d e r appModule ;
6 p r i v a t e L i s t <S t r i n gBu i l d e r > outputModules ;
7
8 pub l i c Conven t i o na lGene r a t o r (RCPAppl i cat ion app , S t r i n g ou tpu tC l a s s) {
9 t h i s . app = app ;

10 _c la s s = ou tpu tC l a s s ;
11 a c t i onVa r sTab l e = new Hashtab le<Act ion , S t r i ng >() ;
12 appModule = new S t r i n gB u i l d e r () ;
13 outputModules = new Ar r a yL i s t <S t r i n gBu i l d e r >() ;
14 }
15
16 pub l i c L i s t <S t r i n gBu i l d e r > gene r a t e () {
17 appModule . append (" p u b l i c c l a s s " + _c la s s + " implements I A p p l i c a t i o n {\n") ;
18 gene ra teMakeAct ions () ;
19 gene r a t eF i l lMenuBa r () ;
20 appModule . append ("}\n") ;
21 outputModules . add (appModule) ;
22 re tu rn outputModules ;
23 }
24 /∗ . . . ∗/
25 }

Figure 7.7: Generator part that handles the main class of the application.

on the generator part that handles the actions. By using such a generator struc-
ture it becomes difficult to modularize the generator according to meta-model
concepts. If one wants to remove the support for a certain meta-model concept
in the generator, one has to understand more than one generator part. More-
over, the interdependency between the generator parts makes the evolution of
the generator hard.

Conventional code generators cannot be implemented in cohesive and com-
posable modules. This implies that adding increments to the generator involves
modifications in existing generator modules. When using a DORI, each meta-
model concept is defined and supported by a DORI module. Such modules can
be composed to form different variants of the DSML. One can make combinations
of modules and obtain different DSMLs without needing to understand any inter-
nals of these modules. Although DORI modules also have dependencies between
them, it is possible to evolve the DSML by developing modules without requiring
changes in the existing modules. For instance, in the code of Figure 7.7 we can see
several statements that are not directly related to having an empty application,

162

7.2 Case Study: Eclipse Rich Client Platform

such as actionVarsTable and the calls to the methods for handling the actions and
menus. Moreover, although there is a separate method for handling actions and
another for handling menus, the code of those methods is tied to the attributes of
the ConventionalGenerator. In the solution based on DORI modules, the modules
for handling actions and menus can be developed independently from the module
that handles the application concept.

7.2.4.4 Extensibility

In order to compare the extensibility of the conventional generator and the DORI,
the generation of code pertaining to the actions is used as an example. Figure 7.8
presents the generator method that handles this issue. This method obtains all
the Action objects contained in the RCPApplication root object, assigns a name
for each of the actions, stores those names in actionVarsTable, and includes an at-
tribute for each action in the generated class (lines 2-7). Moreover, it handles the
implementation of the hook method makeActions(..) in the generated class (lines
9-20), where each action attribute is initialized. Given that an Action object is
either of type ExitAction or OpenAction, and these have to be handled differently,
the if-else block (13-16) addresses this issue. Finally, the action instance is com-
posed in the IBarAdvisor object using register(..) (line 18). As shown previously,
generateMakeActions() method is called by the main generator method generate().

Extending the generator for supporting new action types requires at least to
modify the if-else block (lines 13-16). One would have to understand the contents
of the method, which is already part of a larger unit (the ConventionalGenerator

class), in order to make the correct change to support a new action type. A
possible way of avoiding this would be to have a solution based on the Visitor
pattern, as already mentioned. However, the hot spot to adapt the generator
would have to be learned. The generator would also become like a framework
and it could not be used and reasoned as a regular program.

With the solution based on the DORI, new DORI modules that extend the
Action module can be developed to support new actions. For instance, Figure 7.9
presents a DORI module representing a new maximize action. The given DORI
module is the only thing that one has to define to extend the DSML with the

163

7. EVALUATION

1 p r i v a t e vo id gene ra teMakeAct ions () {
2 i n t v a r i d = 0 ;
3 f o r (Act ion a : app . g e tAc t i on ()) {
4 S t r i n g varName = " a c t i o n " + v a r i d++;
5 a c t i onVa r sTab l e . put (a , varName) ;
6 appModule . append (" p r i v a t e s t a t i c IA c t i o n " + varName + " ; \ n") ;
7 }
8 appModule . append ("\n") ;
9 appModule . append (" p u b l i c vo i d makeAct ions (IBa rAdv i s o r b) {\n") ;

10 f o r (Act ion a : a c t i o nVa r sTab l e . keySet ()) {
11 S t r i n g a c t i o n I n i t = "" ;
12 S t r i n g va r = ac t i onVa r sTab l e . ge t (a) ;
13 i f (a i n s t anceo f Ex i tA c t i o n)
14 a c t i o n I n i t = " Ac t i onFac to r y . c r e a t eQu i t () " ;
15 e l s e i f (a i n s t anceo f OpenAction)
16 a c t i o n I n i t = gene ra teOpenAct ion (a) ;
17 appModule . append (va r + " = " + a c t i o n I n i t + " ; \ n") ;
18 appModule . append ("b . r e g i s t e r (" + va r + ") ; \ n") ;
19 }
20 appModule . append ("}\n\n") ;
21 }

Figure 7.8: Generator part that handles the actions.

1 @Concept
2 pub l i c abs t rac t aspect Maximize extends Act ion {
3 pub l i c I A c t i o n c r e a t eA c t i o n () {
4 re tu rn Act i onFac to r y . c r ea t eMax im i ze () ;
5 }
6 }

Figure 7.9: Example DORI module for a new maximize action.

new action. Just by developing a simple extension of the DORI module Action,
both the concept and its support in the DSML become automatically available
by redoing the meta-model extraction in ALFAMA. Such extensions not only can
be done incrementally without modifying other modules, but also they do not
require to understand internals of any module. Given that the extensions can be
developed without inspecting Action, even a developer that does not understand
anything about the DORI can augment it at these points just by knowing how
to develop an extension of Action.

7.2.4.5 Accidental complexity

A code generator is a program that generates another program. In non-trivial
cases, this “indirection” is a source of complexity that may cause a burden for those

164

7.2 Case Study: Eclipse Rich Client Platform

who have to implement and maintain the generators. Much of that complexity
is accidental, i.e. not directly related with the mapping complexity, but instead
with implementation details and alignment between concepts, generated code,
and the actual framework reuse interface.

In order to illustrate such complexities, consider the case of the menus and
menu items. Figure 7.10 shows yet another generator part for handling the menus.
The method generates the code that implements the hook method fillMenuBar(..)

(lines 2-14). Each Menu object contained in the RCPApplication root object is
handled by generating code that instantiates a MenuManager object representing
the menu, and plugs it into the IMenuManager object that is a parameter of the
hook method (lines 5-8). Given that each menu may contain several menu items,
each MenuItem object contained in the menu is handled by handleMenuItem(..),
which is detailed later in Figure 7.11.

1 p r i v a t e vo id gene r a t eF i l lMenuBa r () {
2 appModule . append (" p u b l i c vo i d f i l lMenuBa r (IMenuManager m) {\n") ;
3 i n t v a r i d = 0 ;
4 f o r (Menu menu : app . getMenu ()) {
5 S t r i n g menuVarName = "menu" + v a r i d++;
6 appModule . append ("MenuManager " + menuVarName +
7 " = new MenuManager (\" " + menu . getName () + " \") ; \ n") ;
8 appModule . append ("m. add (" + menuVarName + ") ; \ n") ;
9

10 i n t submenuVarId = 0 ;
11 f o r (MenuItem item : menu . getMenuitem ())
12 submenuVarId = handleMenuItem (menuVarName , item , submenuVarId) ;
13 }
14 appModule . append ("}\n") ;
15 }

Figure 7.10: Generator part that handles the menus.

The consistency between the code that the generator outputs and the frame-
work reuse interface can easily be broken. A code generator produces text, which
is code that instantiates the framework, such as in line 2 where the hook method
signature is generated. This code is not checked against compilation until the
generator is tested with sample inputs. This brings consistency problems, since
a change in the framework may introduce unnoticeable errors in the code that is
produced by a not up-to-date generator. If fillMenuBar(..) changes its signature,
the generator does not manifest its inconsistency with respect to the framework.

165

7. EVALUATION

The inconsistency would only be noticed when generating code from an applica-
tion model that involves the menus. More concretely, the error would be noticed
during the compilation of the generated code.

In a large-scale setting, the fragility of a code generator can be problematic,
given that it is up to the developer to “manually” ensure the consistency of the
code that the generator is programmed to produce, which potentially depends on
a large set of framework classes. In contrast, if DORI modules define advices that
are acting over inexistent elements, one gets compile-time warnings that inform
that those modules are broken. Nevertheless, compilation errors also occur if the
body of an advice is using inexistent framework elements.

Figure 7.11 shows the generator part that handles the menu items. In the
case of a menu action (lines 3-7), the variable name of the referenced action is
obtained, and the code that plugs the action in the menu is generated. In the case
of a submenu (lines 8-16), the code for plugging a MenuManager object in the top
menu (menuVarName) is generated (lines 11-13). Then, handleMenuItem(..) has
to be called recursively to handle the menu items of the submenu. It is necessary
to keep control of the variable names throughout the generation of the hook
method fillMenuBar(..). Notice how the management of variables of both menus
and submenus affects understandability. Moreover, the collaboration between the
actions and the menus, i.e. the possibility to plug actions in the menus, had to
be anticipated by having the attribute actionVarsTable in ConventionalGenerator.

When observing the code in both Figure 7.10 and Figure 7.11, we can notice
the impact that the management of variable names has in the comprehension of
the generator implementation. When using DORI modules there is no need to
cope with such an additional complexity of managing variable names.

7.2.4.6 Integration of manual code

Finally, with respect to the integration of generated code with manual code,
Figure 7.12 shows the generator part that handles the open actions. The method
generateOpenAction(..) introduces a new module in the generation (line 10). Such
a module is an extension of AbstractAction (lines 4-9), and the skeleton of the

166

7.2 Case Study: Eclipse Rich Client Platform

required run() method is included. This generated module is intended to be
completed manually by the application developer.

As discussed earlier in this dissertation, the open action may need to access
objects that are instantiated within the generated code, which is not meant to be
inspected by an application developer. In these cases, there is no straightforward
solution. One could have an additional “global” class that is generated, which
keeps references to the objects instantiated within the generated code. Such ob-
jects could be accessed for instance by invoking a method with some id for the
object. This kind of solutions would require all the generator parts that han-
dle objects that can be accessed by manual code to generate also code for the
global class. The proposed mechanism in DORIs for accessing objects that are

1 p r i v a t e i n t handleMenuItem (S t r i n g menuVarName , MenuItem item , i n t v a r i d) {
2 i n t l o c a l V a r i d = v a r i d ;
3 i f (i tem i n s t anceo f MenuAction) {
4 MenuAction ma = (MenuAction) i tem ;
5 appModule . append (menuVarName + " . add (" +
6 a c t i onVa r sTab l e . ge t (ma . g e tAc t i on ()) + ") ; \ n") ;
7 }
8 e l s e i f (i tem i n s t anceo f SubMenu) {
9 SubMenu submenu = (SubMenu) i tem ;

10 S t r i n g submenuVarName = "submenu" + l o c a l V a r i d++;
11 appModule . append ("MenuManager " + submenuVarName +
12 " = new MenuManager (\" " + submenu . getName () + " \") ; \ n") ;
13 appModule . append (menuVarName + " . add (" + submenuVarName + ") ; \ n") ;
14 f o r (MenuItem i : submenu . getMenuitem ())
15 l o c a l V a r i d = handleMenuItem (submenuVarName , i , l o c a l V a r i d) ;
16 }
17 re tu rn l o c a l V a r i d ;
18 }

Figure 7.11: Generator part that handles the menu items.

1 p r i v a t e S t r i n g gene ra teOpenAct ion (Act i on a) {
2 S t r i n g a c t i o nC l a s s = "new " + ((OpenAction) a) . getName () + " () " ;
3 S t r i n gB u i l d e r ac t ionModu le = new S t r i n gB u i l d e r () ;
4 act ionModu le . append (" p u b l i c c l a s s " + ((OpenAction) a) . getName () +
5 " ex t end s Ab s t r a c tAc t i o n {\n") ;
6 act ionModu le . append (" p u b l i c vo i d run () {\n") ;
7 act ionModu le . append ("// TODO\n") ;
8 act ionModu le . append ("}\n") ;
9 act ionModu le . append ("}\n") ;

10 outputModules . add (act ionModu le) ;
11 re tu rn a c t i o nC l a s s ;
12 }

Figure 7.12: Generator part that handles open actions.

167

7. EVALUATION

instantiated within the generated code does not require additional work besides
annotating the accessible objects. Moreover, the access is declared at the mod-
eling level, and the variables referencing the objects that one wants to access
are generated into the open modules. Such variables can be used directly by
application developers who do not need to know about any other details.

7.2.4.7 Size

The work in this dissertation proposed DORIs to be implemented in Java/AspectJ.
Programming in AspectJ is effectively programming in Java plus aspect primi-
tives. Table 7.6 presents the number of lines of code (LOC) that the implemen-
tation of both the conventional generator and the DORI required. The LOC are
divided according to the meta-model concepts of Figure 7.5, and the Java and
AspectJ LOC are discriminated for the DORI.

Given the total LOC of both cases, 87 lines for the conventional generator
and 124 lines for the DORI, one could think that the DORI requires more effort
given that it has approximately 42% more LOC than the conventional generator.
However, the given DORI modules have approximately 40 LOC of trivial code
in constructor methods, attributes, and empty hook methods. The only part of
the conventional generator that can be considered trivial is the one that is given
in Figure 7.12. The 124 LOC of the DORI minus these 40 LOC would roughly
have the same LOC as the conventional generator. The fact that the DORI
is separated in several modules, while the conventional generator is in a single
class, also implies more LOC in the DORI given the extra variables and module

Concept Conventional (Java) DORI (Java + AspectJ)
RCP application 22 6 + 0

Action 21 10 + 6
Exit action 8 + 0

Menu 14 18 + 7
Menu item 17 5 + 13
Submenu 15 + 0

Menu action 9 + 6
Open action 12 22 + 0

total 87 124 (92 + 32)

Table 7.6: LOC for conventional generator and DORI.

168

7.3 Discussion

headers. Finally, the DORI also embodies the definition of concepts, which in the

conventional solution has to be maintained separately in the meta-model.

7.3 Discussion

The role of the case studies in this work was twofold. While investigating how

to implement specialization aspects and elaborating the possible modeling con-

structs in DORIs, the two frameworks were used as a source to mine hot spots

and test solutions. By the time when the proposed approach began to stabilize,

the frameworks were used to validate the approach and a more detailed analy-

sis was performed. The remainder of this section presents some criticism to the

evaluation and limitations of the proposed approach.

7.3.1 Methodological risks

As a criticism to the evaluation of the approach based on the two case studies,

one may argue that both JHotDraw and Eclipse RCP have similar domains.

This fact could then raise the question if the scope of applicability of DORIs is

restricted only to GUI-related domains. As shown in both Table ?? and Table

7.2, the sets of concepts of both frameworks contain cases for every framework

adaptation mechanism as well as for several combinations of them. Moreover,

the domain variability models represented for both frameworks involve all the

constructs of conceptual modeling. Therefore, assuming that frameworks rely on

the given adaptation mechanisms, it seems reasonable to conclude that DORIs

have a reasonable scope of applicability. However, it can only be actually claimed

that the proposed approach has no limitations with respect to the framework’s

domain by developing DORIs for more frameworks, which address other domains.

The case studies were carried out by the author of this dissertation. The

author is naturally an expert in the approach he proposes, and therefore, this

non-neutral character of the evaluation also consists of a methodological risk.

169

7. EVALUATION

7.3.2 Limitations

Without a supporting methodology, a framework developer may take some time
to master the development of DORI modules, due to their different design style.
Although the patterns given in Chapter 4 may help on this issue, they do not
make it trivial.

Despite the learning issues, the main disadvantage of our approach is related
to flexibility. The mechanisms to represent the meta-model elements in the DORI
are not very flexible. Each modeling construct has a single way of being expressed.
For instance, a concept must be represented in a module and the attributes must
be represented in a constructor of that module. Although different ways to repre-
sent the same modeling construct could be considered, no practical significance in
doing so has been found so far, while more constructs could compromise simplic-
ity. Perhaps when applying the approach on more frameworks, this option could
be revised if DORI modules are found “inelegant”. In conventional generative
approaches, classes, attributes, etc, can be mapped freely, in a sense that it is up
to framework developers to decide how to map modeling elements to implemen-
tation elements. Therefore, the uniform representation of modeling constructs in
DORI modules compromises flexibility to a certain extent.

Certain frameworks are built in such a way that their instantiation relies on
external artifacts other than code written in the object-oriented language in which
the framework is implemented. For instance, XML is a typical format for such
external artifacts. In these cases, specialization aspects are not an appropriate
option or they do not solve a significant part of the problem. For instance,
frameworks such as Spring (Spring Source, 2008) and JBoss AOP (JBoss, 2008)
rely heavily on XML. However, there is an important issue here. Such XML
files have a similar role to a DSL, and can in fact be considered as such. An
XML file (or a set of them) is representing an application model, which can be
validated against a grammar (e.g. XML Schema) that plays a role similar to a
meta-model. Therefore, up to a certain extent, an XML-based solution for using
a framework and specialization aspects overlap in their goal of providing a means
for higher level framework usage. This fact leads to the conclusion that, at least
conceptually, the two kinds of usage cannot be easily combined.

170

Chapter 8

Related Work

This chapter compares the work of this dissertation with related approaches,
which are divided into three main subjects. Section 8.1 addresses other ap-
proaches that combine frameworks and aspects. Section 8.2 addresses feature-
oriented programming (FOP), a programming paradigm that handles features as
first-class entities in the implementation of software systems. Finally, Section
8.3 addresses domain-specific modeling (DSM), the trend which the work in this
dissertation follows.

8.1 Combining Frameworks and Aspects

Kulesza et al. (2006a) propose an approach for combining aspects with object-
oriented frameworks. They propose the variability within the framework to be
handled by extension aspects. Such aspects are based on the notion of extension
join points (EJPs), which are locations that are exposed for introducing function-
ality. Aspects can introduce optional or alternative features at the EJPs. Such
aspects introduce functionality at the framework classes, rather supporting the
instantiation and composition of classes in a framework-based application. EJPs
also serve the purpose of integrating the framework with other frameworks or
APIs.

In the work of this dissertation, the aspects are the building blocks of a
framework-based application, while they do not introduce functionality in the
framework classes. Moreover, it is not meant that specialization aspects embody

171

8. RELATED WORK

extra framework functionality. Specialization aspects simply form a higher-level

reuse interface for building a framework-based application.

The use of extension aspects is an alternative to FOP (discussed in the next

section), but following a more conservative approach. Extension aspects can be

developed for existing frameworks by making lightweight modifications on them,

while FOP approaches are revolutionary in the sense that they require a system

to be structured in a significantly different manner. Contrarily to extension as-

pects and FOP, specialization aspects can be developed for an existing framework

without modifying it.

There is nothing that prevents both extension aspects and specialization as-

pects to be used in combination. Extension aspects act solely on the framework

classes, whereas specialization aspects act solely in framework-based application

modules. However, combining both approaches arbitrarily would probably not

be optimal. The point is that the framework design when using extension aspects

for optional or alternative features is likely to be different than a framework de-

sign that enables the same variability by conventional instantiation. Therefore,

it would make sense to combine both approaches if the variable parts that are

addressed by extension aspects and by specialization aspects do not overlap, and

accordingly, the framework is designed taking this separation into account.

Anastasopoulos & Muthig (2004) present an evaluation of AOP as a product-

line implementation technology. The authors detail a case study on an hypothet-

ical product-line using AspectJ, where aspects implement optional or alternative

features, as in the case of Kulesza et al. (2006a).

Both approaches (Anastasopoulos & Muthig, 2004; Kulesza et al., 2006b) have

been used in combination with feature models, where feature configurations are

the only input for obtaining system variants. However, as discussed in the next

section, feature models impose certain limitations.

This dissertation demonstrates how AspectJ is suitable for implementing spe-

cialization aspects for Java frameworks. In the case of C++ frameworks, special-

ization aspects could be implemented using AspectC++ (Spinczyk et al., 2002).

172

8.2 Feature-Oriented Programming (FOP)

8.2 Feature-Oriented Programming (FOP)

In the Feature Oriented Domain Analysis (FODA) method, Kang et al. (1990)
define a feature as “any prominent and distinctive aspect or characteristic that is
visible to various stakeholders (i.e. end-users, domain experts, developers, etc).”
Subsection 8.2.1 explains the concept of feature models, which are intrinsically
related to FOP, Subsection 8.2.2 addresses FOP languages, and Subsection 8.2.3
discusses these subjects in the context of this dissertation.

8.2.1 Feature models

A feature model explicitly describes the possible variants of a system in terms of
its features. A feature configuration is a selection of features of a feature model,
which describes the features of a system variant. The initial proposal of feature
models was given in the FODA method, while several extensions and refinements
of it have been proposed throughout the years by other authors (e.g. Czarnecki
& Eisenecker, 2000; Czarnecki et al., 2005; Griss et al., 1998; Gurp et al., 2001).
Despite some details in modeling constructs and/or notations, all the proposals
have in common the following characteristics:

• The main entities are the features, which are organized hierarchically in a
tree, where the tree root represents the system as a whole.

• Child features, i.e. which are nested under a parent feature, may only be
part of a system if its parent feature also is.

• There is a distinction between optional and mandatory features.

Figure 8.1 presents an example of a feature model, using domain concepts sim-
ilar to those given throughout the examples of this dissertation. The root concept
is application. The filled circle denotes a mandatory feature (e.g. menus), whereas
the non-filled circle denotes an optional feature (e.g. toolbar). Feature groups,
denoted by connecting the parent-child links of features, may have configura-
tion constraints. For instance, the group formed by file, edit, and help defines a
constraint that enforces that one up to three features of the group have to be se-
lected. As another example, the default and user-defined are alternative features.

173

8. RELATED WORK

Application

ToolBarMenus

File Edit Help

<1-3>

Actions

Default UserDefined

About

Figure 8.1: Example of a feature model.

Therefore, by reading the diagram one can infer that an application must have
menus, which can be the file, edit, and help menus. At least one of these menus
has to be part of an application. The file menu can have an optional about item.
The toolbar and the actions are optional features. The latter are either default
or user-defined.

Figure 8.2 presents a valid configuration of the features of the model given in
Figure 8.1. The selected features are represented in gray, and define an application
with the file menu, which has the about action, with the help menu, and that
uses default actions.

Feature models may not be sufficient for expressing variants of a system, due
to their limitations with respect to expressiveness (Czarnecki, 2004). A feature

Application

ToolBarMenus

File Edit Help

<1-3>

Actions

Default UserDefined

About

Figure 8.2: Valid feature configuration of the feature model of Figure 8.1.

174

8.2 Feature-Oriented Programming (FOP)

model represents a finite variability space where every system variant is antici-
pated. If there is need for more expressive descriptions of system variants, other
means such as conceptual models become necessary.

Although more expressive means for describing system variants might be nec-
essary, feature models can still be used as a first step for expressing a system
variant. Czarnecki & Antkiewicz (2005) propose an approach to map features
to other modeling artifacts, such as class models, so that the latter can vary
according to feature configurations. Class models may be representing domain
variability models such as the ones proposed in this dissertation, enabling them
to be adaptable according to feature configurations.

As an example of a limitation in the expressiveness of feature models, consider
that in the given example, we would like to have the about item as an optional
feature that could be part of any of the menus. A feature configuration would
then define in which menu the about item would be. A possible option could be
to have an optional about feature as a child of each menu (i.e. file, edit, help).
However, this option would introduce redundancy and cluttering in the feature
model. Next subsection explains related problems at the implementation level.

8.2.2 FOP languages

FOP is a programming paradigm where features are a first-class entity in a sys-
tem’s implementation. In FOP languages, such as AHEAD (Batory et al., 2003),
CaesarJ (Mezini & Ostermann, 2004), aspectual mixin layers (AML) (Apel et al.,
2006), or ClassBox/J (Bergel et al., 2005), a system can be structured by means
of several feature refinements. Each refinement cohesively implements a feature
by refining a set of classes of the system. By cohesively, it is meant that a
refinement completely implements the associated feature in the system. If we
consider the general concept of feature models as presented in Subsection 8.2.1,
FOP approaches enable a one-to-one mapping between the features of a feature
model and the refinements which implement them. In this way, with a feature
configuration, one obtains a system variant solely by synthesizing the refinements
according to the selected features. Such a process is automated by a tool or a
compiler. Although the authors of ClassBox/J do not characterize their work as

175

8. RELATED WORK

a FOP language, feature refinements can be implemented in ClassBox/J in an
equivalent way to the other languages that were mentioned.

Along with the limitations in the expressiveness of feature models, systems
built using FOP also have limitations with respect to variability, namely due
to the lack of mechanisms that enable an elegant implementation of all possible
system variants without duplicated code. Moreover, FOP languages are not ade-
quate for addressing an infinite variability space of system variants, where all the
possible compositions of system elements cannot be anticipated.

In order to illustrate the limitations of FOP, a simple hypothetical case of
implementing the features given on Figure 8.1 is presented next. The syntax of
AHEAD is used, and only the features application, menus, file, and about, are
shown. The following would be the base feature of the system (Application).

1 f e a t u r e App l i c a t i o n ;
2

3 c l a s s Ba s eApp l i c a t i o n {
4 // . . .
5 void createMenus (MenuBar mb) {
6 }
7 }

BaseApplication is a class module with an empty method for creating the menus.
Given that the menus can vary among system variants, it is up to feature refine-
ments to complete the method. The following is a feature refinement (File) for
including the file menu.

1 f e a t u r e F i l e ;
2

3 c l a s s Fi leMenu extends Menu {
4 Fi leMenu () {
5 super (" F i l e ") ;
6 // . . .
7 }
8 }
9

10 r e f i n e s c l a s s Ba s eApp l i c a t i o n {
11 void createMenus (MenuBar mb) {
12 super . c reateMenus (mb) ;
13 Menu f i l eMenu = new Fi leMenu () ;

176

8.2 Feature-Oriented Programming (FOP)

14 mb. add (f i l eMenu) ;
15 }
16 }

The class FileMenu that extends Menu (suppose it is the system class that rep-
resents a menu) is defined, and the method createMenus(..) of the class BaseAp-
plication (shown in the previous code snippet) is refined. Additionally to the
existing behavior (super.createMenus(..)), the file menu is added to the MenuBar
parameter.

Considering now the about item in the file menu, the following is a refinement
(About) for addressing this feature.

1 f e a t u r e About ;
2

3 r e f i n e s c l a s s Fi leMenu {
4 r e f i n e s Fi leMenu () {
5 super () ;
6 add (new About ()) ;
7 }
8 }

The constructor of the class FileMenu (given in the previous code snippet) is
refined for plugging in an instance of About, which represents an about item and
can be plugged in using Menu.add().

The class BaseApplication if composed with the feature refinements File and
About would result in a synthesized system variant having the file menu with
the about item. However, coming back to the case given in Subsection 8.2.1,
if we want to enable the about item to be plugged in any of the menus, there
are problems not only with respect to the feature model, but also concerning the
implementation. In this case, we would need different feature refinements for each
menu, given that the plugging of the about item cannot be generalized for every
menu. This solution is not good given that all these refinements would contain
a lot of redundancy, and a new menu feature would require another refinement
for handling the about item. Moreover, the problem would become more serious
if other existing features would interact with the about item. If the about item
is represented in several different refinements, the interacting feature must be
represented in several refinements, one for each case of the about item.

177

8. RELATED WORK

8.2.3 Discussion

Although it might not always be the case, the set of possible applications based
on a framework is often unbound and cannot be anticipated. In these cases,
the possible compositions of framework-provided elements cannot be expressed
as a feature model, and accordingly, a framework-based application cannot be
expressed with detail just by having a feature configuration. More expressive
constructs for feature models have been proposed, such as attributes and cardi-
nalities (Czarnecki et al., 2005). However, the use of these constructs is still not
expressive enough for describing framework-based applications, and nevertheless,
they cannot be seamlessly integrated with the constructs available in existing
FOP languages.

In the context of the work of this dissertation, domain variability models
assume the role of a feature model, whereas application models assume the role
of feature configurations. However, as explained before, feature models are less
expressive than conceptual models. A feature model can be represented in an
equivalent conceptual model, while not every conceptual model can be represented
in a feature model.

Figure 8.3 presents a conceptual model describing an equivalent variability
to the feature model of Figure 8.1. However, the about feature was considered
as part of any menu, according to the variability modeling problem introduced
previously, in order to illustrate how this kind of variability can be represented in
a more elegant way than if using a feature model. Moreover, the solution given in
the conceptual model enables new menus to be added, while not requiring other
changes in the model. This would not be possible with the given feature model.

Although the graphical notation of feature models might describe the features
more naturally and explicitly, the possible instances of the conceptual model are
equivalent to the possible feature configurations of the feature model. Figure 8.4
represents an instance of the conceptual model of Figure 8.3 that represents the
same feature configuration as in Figure 8.2.

In order to illustrate the different expressiveness of feature models, consider
for instance the simple conceptual model given in Figure 5.4, which was used as
an example for introducing DORIs. Such a conceptual model cannot be expressed

178

8.2 Feature-Oriented Programming (FOP)

through a feature model. Therefore, there is a clear difference between the kind
of variability management enabled by what is proposed in this dissertation, i.e.
using conceptual models and frameworks, and the variability based on feature
models and FOP. The possible feature configurations of a feature model corre-
spond to a finite set of trees, while the possible instances of a conceptual model
can correspond to an infinite set of directed graphs. A tree is a constrained type
of graph, which explains the different expressiveness of feature models.

Despite the different expressive power, FOP and framework specialization
aspects have a commonality in their strategy, which is to raise the abstraction
level of the solution space, so that the mapping of problem space abstractions
becomes straightforward. However, in a system built using FOP, the feature
refinements are simply part of the system and can be used just by including
them in a synthesized system, without the need of developing additional code.
On the other hand, framework specialization aspects imply the development of
application aspects for including the features. This is due to the fact that FOP
features are simply part of a system or not, whereas an application aspect is part of
a framework-based application in a certain context and with certain parameters,
which have to be given by the aspect.

From the point of view of feature cohesion, the application aspects have a
nature similar to the feature refinements of FOP systems. In both cases, each
module cohesively implements a feature in an application, which can be includ-
ed/excluded by including/excluding the module. The difference is that a feature
refinement affects the system modules and it is applied equally in all system vari-
ants, whereas each application aspect only modifies the modules of a framework-

Application<<abstract>>
Menu

File Edit Help

1..3

ToolBar

0..1 Actions

Default

<<abstract>>
Kind

1

UserDefined

0..1

About 0..1

Figure 8.3: Feature model of Figure 8.1 represented as a conceptual model.

179

8. RELATED WORK

:Application

:File :Help

:Actions

:Default:About

Figure 8.4: Instance of the classes of Figure 8.3, representing the feature config-
uration given in Figure 8.2.

based application in a certain context. Classbox/J is an exception to the other
FOP languages, given that refinements take effect within a unit of scoping (a
classbox), enabling to have several versions of a same class coexisting in the sys-
tem.

Batory et al. (2000) argue that frameworks have limitations concerning in-
clusion/exclusion of optional features as a basis for the motivation for FOP, but
a comparison of the variability enabled by the two approaches is not available.
FOP is a revolutionary approach, given that although it is built upon object-
orientation it requires a system to be refactored into feature refinements. On the
other hand, framework specialization aspects are evolutionary, given that they
assume frameworks as they are currently built and do not require any modifica-
tions on their implementation. An advantage of such an evolutionary approach
is that it does not “dismiss” the solid body of existing knowledge on framework
construction. Frameworks can be built as they have been built for years, and
additionally, specialization aspects can be developed to support their usage on a
higher level.

Finally, as well as in the case of extension aspects (previous subsection), ap-
parently there is no obstacle to having a framework where feature refinements
modularize optional and alternative features, while specialization aspects give
support for adapting other variable parts in framework-based applications that
are not simply about inclusion/exclusion of predefined features.

8.3 Domain-Specific Modeling (DSM)

Domain-specific modeling (DSM) (DSM Forum, 2007) is a trend that promotes a
software development paradigm where applications of a certain domain are gen-

180

8.3 Domain-Specific Modeling (DSM)

erated from domain-level descriptions, often referred to as domain-specific model-
ing languages (DSMLs). MetaEdit+ (MetaCase, 2008), Microsoft DSL Tools
(Greenfield & Short., 2005), Generic Modeling Environment (GME) (Ledeczi
et al., 2001), or Eclipse-based technologies (EMF, JET, GMF Eclipse Foundation,
2007c), are examples of language workbenches that support the development of
DSM solutions, providing the infrastructure for defining meta-models, graphical
concrete syntax for models, and code generators.

A particular and popular application case of DSM is generation of framework-
based applications — the case which this dissertation concentrates on. Such kind
of DSM approach has been in practice for long. Roberts & Johnson (1997) used
the term visual builder for referring to a DSML, and point out that black-box
frameworks are suitable for building such a solution. The work in this dissertation
goes along this trend, in the sense that the specialization aspects form a higher-
level black-box reuse interface.

In conventional DSM approaches, meta-models and code generators are devel-
oped independently from the framework. Framework developers have to ensure
the consistency between the framework, the meta-model, and the code gener-
ator. As the domain evolves, these three elements have to evolve accordingly.
Experience reports reveal that the code generator should be kept as simple and
straightforward as possible, in order to avoid difficulties related with domain
evolution (Pohjonen & Tolvanen, 2002).

This dissertation proposes a DSM approach that dissents from the state-of-
the-practice, where DSMLs are encoded in the solution space, rather than as
a separate abstraction in the problem space. As explained, this is possible by
raising the abstraction level of the solution space (i.e. the framework plus the
specialization aspects). The DSM philosophy (DSM Forum, 2007) is in favor of
having DSML definitions which follow a domain-oriented approach, rather than
an implementation-oriented approach, so that the languages support modeling
at higher abstraction levels. The work presented in this dissertation also sticks
to this philosophy. Given that DSMLs are proposed to be defined in the im-
plementation elements, one could associate this to an implementation-oriented
approach. However, the DSML is not defined in the conventional reuse interface,
but it is instead defined on the DORI modules, which constitute a higher-level

181

8. RELATED WORK

reuse interface whose extensions closely resemble application concepts and their
relationships.

Although the proposed approach does not require implementing code genera-
tors and defining DSMLs separately, it can be applied using the existing language
workbenches, using their meta-model format and facilities for defining the con-
crete syntax of a DSML. Therefore, the adoption of DORIs is not an alternative to
existing language workbenches, it simply proposes a way to develop an “enhanced”
solution space. In case one does not want to use the generic code generator for
any particular reason, code generators can still be defined manually — a task that
becomes facilitated due to the higher-level reuse interface based on specialization
aspects.

Antkiewicz & Czarnecki (2006) present the idea of having Framework-Specific
Modeling Languages (FSMLs) which support round-trip engineering. As happens
in our approach, code generators do not have to be developed. The FSMLs are
defined through feature models, and code generation relies on mappings between
features and framework elements. The use of a FSML supports a development
paradigm in which an application is obtained by generating code that is meant
to be completed manually. Given that FSMLs are defined in the form of feature
models, the definition of the variability space has similar constraints to systems
built using FOP. However, the authors present the approach as appropriate for
solutions where non-generated code has to be developed manually.

The approach of this dissertation does not intend to support round-trip engi-
neering. Instead, a mechanism for clear separation between generated and man-
ually written code is adopted. Following the DSM philosophy of raising the
abstraction level by hiding complexity, generated code is not intended to be ma-
nipulated or understood.

Due to the reasons pointed out in Section 7.3.2, conventional DSM approaches,
as well as FSMLs, are more flexible with respect to the mapping of concepts to
framework-based code. While DORIs are less flexible, there are automation gains
and the DSM solution relies only on the framework implementation.

182

Chapter 9

Conclusions and Future Work

This chapter concludes the dissertation by summarizing the contributions (Sec-
tion 9.1), outlining future work (Section 9.2), and presenting some final remarks
(Section 9.3).

9.1 Summary of Contributions

The essence of the contributions of this dissertation is twofold. This work pro-
poses:

• An effective technique for building framework reuse interfaces using special-
ization aspects, which enable the development of framework-based applica-
tions at a higher abstraction level than with conventional reuse interfaces.
In this approach, a framework-based application is composed of several ap-
plication aspects that are based on the specialization aspects.

• A technique for encoding the definition of a conceptual model within a reuse
interface composed of specialization aspects, so that the transformation of
instances of that conceptual model into application aspects can be general-
ized. The technique relies on the close relation between application aspects
and application models, and on the uniform mechanism to instantiate con-
cepts. The proposed kind of reuse interface was named domain-oriented
reuse interface (DORI).

183

9. CONCLUSIONS AND FUTURE WORK

The DORI concept gave the title of this dissertation, due to the belief that
it is the ultimate end of what is proposed, while specialization aspects are a
means for achieving it. The ALFAMA language workbench that was developed,
together with the case studies using two real frameworks, stands as a proof-of-
concept that the proposed approach is feasible in realistic settings. The approach
is evolutionary, given that it is applicable to frameworks as they have been built
already for many years, and therefore, all the solid knowledge on framework
construction as well as the existing frameworks are not dismissed.

9.2 Future Work

This section outlines several topics for future research work that can be carried
out in sequence of what was proposed in this dissertation.

9.2.1 Constraints on DSMLs

As explained in Chapter 5, a DORI is capable of encoding a domain-specific mod-
eling language (DSML), whose definition is given in terms of a conceptual model.
Such a conceptual model comprises concepts with attributes, abstract concepts,
concept inheritance, composite and directed associations. Although the model-
ing constructs are fairly rich, detailed domain rules may require more expressive
means to enforce them. Such detailed constraints can be specified on top of the
conceptual model using an additional language, such as the Object Constraint
Language (OCL) (OMG, 2003). In doing so, the possible instances of the con-
ceptual model are constrained by OCL expressions, which enforce more detailed
domain rules. Scenarios using OCL (or a similar means) were not experimented in
the case studies that were carried out. New annotation types on DORI modules
could support the definition of these constraints.

A DSML covers the features of a given framework. If there are a large number
of features, it is likely that the number of DSML concepts is also large. Given
this, another kind of constraint for the DSML that would be useful is related to
its adaptability according to yet more high-level abstractions, which could be for

184

9.2 Future Work

instance configurations of a feature model. A feature model could represent high-
level features, which by themselves cannot completely specify an application, but
which could constrain the DSML according to the features that one wants to use in
an application model. This could be achieved by associating features with sets of
DSML concepts. A feature configuration would thus be a first step for describing
an application, and then one would instantiate the adapted DSML. For instance, a
feature “Menus” in a feature model could be associated with the set of concepts of
the DSML “Menu”, “Submenu”, and “Menu Action”, so that these concepts would
not be available in the DSML if the feature would not be selected. In a large-
scale setting, reducing the size of the DSML using high-level feature abstractions,
could facilitate the tasks of learning a DSML and maintaining application models.
Moreover, the usability of modeling environments could be improved, given that
there would be fewer interaction options due to the reduced number of DSML
concepts.

9.2.2 Concrete syntax of DSMLs

This dissertation did not address the definition of a concrete syntax for DSMLs.
However, although this issue is orthogonal to the proposed work and can be sup-
ported independently, it is of extreme importance. Graphical concrete syntax is
attractive for describing application models. Graphics are typically capable of
offering better usability than text-based concrete syntax. Moreover, a graphical
application model can assume a double role. It is simultaneously the formal spec-
ification of the application and a significant part of its documentation, given that
graphics are typically used for documenting applications. Graphical descriptions
are essentially based on nodes, and links that connect those nodes. Such elements
are represented in figures, which are typically related to existing domain nota-
tions. Having an abstract syntax (e.g. defined as a meta-model), the information
for associating its elements to nodes and figures has to be given elsewhere. Future
work could explore the feasibility of having a way to also specify within a DORI
the mapping of elements to nodes and links. Additional tool support could then
use this information as input for generating a graphical modeling environment.

185

9. CONCLUSIONS AND FUTURE WORK

9.2.3 Integration of Frameworks and their DSMLs

Framework integration is a well-known problem (Fayad et al., 1999). Apparently,
there is no obstacle for using specialization aspects for integrating applications
based on two different frameworks. However, such scenarios were not explored in
the context of this dissertation. Assuming that this would be possible and that
each of the frameworks to be integrated has a DSML derived from its DORI, an
interesting direction would be to explore how to develop a DSML that integrates
those DSMLs. It could be experimented if such DSMLs could rely on special-
ization aspects that “bridge” the specialization aspects of the frameworks to be
integrated.

9.3 Final Remarks

The author of this dissertation believes that the path that has to be followed for
increasing productivity and quality in software development should heavily rely
on reuse and on raising the level of abstraction of development artifacts, rather
than relying on more sophisticated general-purpose programming languages.

Frederick P. Brooks (1987) classifies software complexity into essential and ac-
cidental. Essential complexity is inherent to the problem that the software solves,
whereas accidental complexity arises due to the abstractions that are being used
to implement the solution to that problem. More sophisticated programming lan-
guages may provide better abstractions for solving problems, but are not reliev-
ing developers from the essential complexity of those problems. Object-oriented
frameworks tackle essential complexity, given that they provide an abstract solu-
tion for a family of related problems. A framework may be already addressing a
great part of the essential complexity of a problem, while framework-based appli-
cations only have to fill-in missing parts which differentiate the problems. Here
resides the power of frameworks.

Although frameworks are powerful, successful framework-based application
development may not be easy to achieve. In the first place, building a frame-
work is far more costly than building a normal application and requires good

186

9.3 Final Remarks

designers and domain experts. Enabling the “right” variability may be challeng-
ing, given that the framework has to meet the requirements of a typically wide
set of applications. Moreover, the variability requirements are likely to evolve
constantly, given the demands from multiple applications and the unavoidable
domain evolution. Once the variability requirements are met, the usability of the
framework considerably affects its effectiveness. A framework that is difficult to
use may compromise the pay-off of having a framework-based development. Ap-
plication developers have to understand the reuse interface of the framework, a
task which may require a considerable investment even if the domain concepts are
well-understood. Therefore, framework learning involves a significant amount of
accidental complexity, given that application developers are faced with a difficulty
that is not related with the essence of the problem.

In order to reduce the accidental complexity of framework learning, several us-
age strategies have been proposed, as explained in Chapter 2. On such proposals,
all the kinds of external artifacts to the framework have a common goal, which
is to assist the use of the solution space abstractions (i.e. framework), and thus,
tackling accidental complexity. F-DSLs have a close to ideal usability in terms of
framework usage support. Application developers only need to understand about
domain concepts and cope with a language with very little accidental complexity,
given that, ideally, an F-DSL solely deals with the essential complexity of the
problem domain.

Conventional approaches for building F-DSLs are based on creating inde-
pendent abstractions on the problem space, which are mapped to the solution
space abstractions. Although the F-DSLs reduce accidental complexity in appli-
cation development, its implementation and maintenance have a fairly significant
amount of both essential and accidental complexity. The essential complexity
is associated with the mapping complexity and its constant evolution. Having
the F-DSL concepts set, no matter which technology is adopted, the essential
complexity will be the same given that the mapping is equally complex in all so-
lutions. A particular technology may help to cope with the accidental complexity
associated with mapping primitives, consistency, and debugging, but it will never
simplify the mapping itself.

187

9. CONCLUSIONS AND FUTURE WORK

This dissertation went in the direction of improving the abstractions for defin-
ing the solution space, rather than relying on problem space abstractions. The
higher-level framework reuse interfaces using specialization aspects reduce the
essential complexity of the mapping between concepts and code. Going one step
further, the proposed language workbench reduces the accidental complexity of
implementing transformations, given that code generators do not have to be de-
veloped.

Given that DORIs and the proposed language workbench reduce essential and
accidental complexity accordingly, how can one demonstrate that the complexity
of developing DORIs does not outweigh the complexity of conventionally develop-
ing an F-DSL? The question is indeed pertinent, and logically, the author of this
dissertation favors DORIs. One could think that this could only be properly eval-
uated with quantitative data gathered from empirical studies which compare the
development of DORIs and conventional solutions. However, doing this in an un-
questionable manner would be too costly, if even feasible. This dissertation made
an attempt to present evidence to the reader that DORIs are less complex than
conventional solutions, by comparing several illustrative cases. Such evidence did
not rely on toy examples, but it rather involved the use of real frameworks, as
described in the case studies, and a working prototype tool.

188

References

Aguiar, A. (2003). Framework documentation, a minimalist approach. Ph.D.
thesis, Faculty of Engineering, University of Porto.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-

King, I. & Angel, S. (1977). A Pattern Language — Towns, Buildings,
Construction.. Oxford University Press.

Anastasopoulos, M. & Muthig, D. (2004). An evaluation of aspect-oriented
programming as a product line implementation technology. In ICSR’04: Pro-
ceedings of the 8th International Conference on Software Reuse.

Antkiewicz, M. & Czarnecki, K. (2006). Framework-specific modeling lan-
guages with round-trip engineering. In MoDELS’06: Proceedings of the 9th
International Conference Model Driven Engineering Languages and Systems .

Apel, S., Leich, T. & Saake, G. (2006). Aspectual mixin layers: aspects
and features in concert. In ICSE ’06: Proceedings of the 28th International
Conference on Software Engineering .

Batory, D., Cardone, R. & Smaragdakis, Y. (2000). Object-oriented
frameworks and product lines. In Proceedings of the 1st Software Product Line
Conference.

Batory, D., Sarvela, J.N. & Rauschmayer, A. (2003). Scaling step-wise
refinement. In ICSE ’03: Proceedings of the 25th International Conference on
Software Engineering .

189

REFERENCES

Bergel, A., Ducasse, S. & Nierstrasz, O. (2005). Classbox/J: controlling
the scope of change in java. In OOPSLA ’05: Proceedings of the 20th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications .

Bosch, J. (1999). Product-line architectures in industry: a case study. In ICSE
’99: Proceedings of the 21st International Conference on Software Engineering .

Bosch, J. (2000). Design and use of software architectures: adopting and evolv-
ing a product-line approach. ACM Press/Addison-Wesley Publishing Co.

Cleaveland, J.C. (1988). Building application generators. IEEE Software, 5,
25–33.

Colyer, A. & Clement, A. (2004). Large-scale AOSD for middleware. In
AOSD ’04: Proceedings of the 3rd International Conference on Aspect-Oriented
Software Development .

Czarnecki, K. (2004). Overview of generative software development. In
Proceedings of the International Workshop on Unconventional Programming
Paradigms .

Czarnecki, K. & Antkiewicz, M. (2005). Mapping features to models: a
template approach based on superimposed variants. In GPCE’05: 4th Interna-
tional Conference Generative Programming and Component Engineering .

Czarnecki, K. & Eisenecker, U.W. (2000). Generative programming: meth-
ods, tools, and applications . ACM Press/Addison-Wesley Publishing Co.

Czarnecki, K., Helsen, S. & Eisenecker, U.W. (2005). Formalizing
cardinality-based feature models and their specialization. Software Process:
Improvement and Practice, 10, 7–29.

DSM Forum (2007). Workshops on domain-specific modeling, 2001-2006.
http://www.dsmforum.org/DSMworkshops.html.

190

REFERENCES

Durham, A.M. & Johnson, R.E. (1996). A framework for run-time systems
and its visual programming language. In OOPSLA ’96: Proceedings of the
11th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications , 406–420.

Eclipse Foundation (2007a). AspectJ programming language.
http://www.eclipse.org/aspectj.

Eclipse Foundation (2007b). Eclipse platform. http://www.eclipse.org.

Eclipse Foundation (2007c). Eclipse platform and projects.
http://www.eclipse.org/projects.

Eclipse Foundation (2007d). EMF – Eclipse Modeling Framework.
http://www.eclipse.org/emf.

Eclipse Foundation (2007e). GMF – Graphical Modeling Framework.
http://www.eclipse.org/gmf.

Fairbanks, G., Garlan, D. & Scherlis, W. (2006). Design fragments make
using frameworks easier. In OOPSLA ’06: Proceedings of the 21st ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications .

Fayad, M.E., Schmidt, D.C. & Johnson, R.E. (1999). Building application
frameworks: object-oriented foundations of framework design. John Wiley &
Sons, Inc.

Filman, R.E. & Friedman, D.P. (2004). Aspect-oriented programming is
quantification and obliviousness. In Aspect-Oriented Software Development ,
chap. 2, 21–35, Addison-Wesley.

Fowler, M. (2008). Martin Fowler’s Bliki.
http://www.martinfowler.com/bliki/.

Frederick P. Brooks, J. (1987). No silver bullet: essence and accidents of
software engineering. Computer , 20, 10–19.

191

REFERENCES

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc.

Greenfield, J. & Short., K. (2005). Software Factories: Assembling Appli-
cations with Patterns, Frameworks, Models and Tools.. John Wiley and Sons.

Griss, M.L., Favaro, J. & d’ Alessandro, M. (1998). Integrating feature
modeling with the RSEB. In ICSR ’98: Proceedings of the 5th International
Conference on Software Reuse.

Gurp, J.V., Bosch, J. & Svahnberg, M. (2001). On the notion of variability
in software product lines. In WICSA’01: Proceedings of the Working IEEE/I-
FIP Conference on Software Architecture.

Hakala, M., Hautamäki, J., Koskimies, K., Paakki, J., Viljamaa, A.

& Viljamaa, J. (2001). Architecture-oriented programming using FRED. In
ICSE’01: Proceedings of the 23rd International Conference on Software Engi-
neering (Formal research demo).

Hanenberg, S., Schmidmeier, A. & Unland, R. (2003). AspectJ idioms for
aspect-oriented software construction. In EuroPLOP’03: 8th European Confer-
ence on Pattern Languages of Programs .

Hautamäki, J. & Koskimies, K. (2006). Finding and documenting the spe-
cialization interface of an application framework. Software: Practice and Expe-
rience, 36, 1443–1465.

Holmes, R., Walker, R.J. & Murphy, G.C. (2005). Strathcona example
recommendation tool. In ESEC/FSE-13: Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering .

JBoss (2008). JBoss AOP. http://www.jboss.org/jbossaop/.

Johnson, R.E. (1992). Documenting frameworks using patterns. In OOPSLA
’92: Proceedings of the 7th ACM SIGPLAN International Conference on
Object-Oriented Programming Systems, Languages, and Applications .

192

REFERENCES

Johnson, R.E. (1997). Frameworks = (components + patterns). Commun.
ACM , 40, 39–42.

Johnson, R.E. & Foote, B. (1988). Designing reusable classes. Journal of
Object-Oriented Programming , 1, 22–35.

Johnson, S.C. (1979). Yacc: Yet another compiler compiler. In UNIX Program-
mer’s Manual , Holt, Rinehart, and Winston.

Kang, K., Cohen, S., Hess, J., Nowak, W. & Peterson, S. (1990).
Feature-oriented domain analysis (FODA) feasibility study. Tech. rep.,
Carnegie Mellon University.

Kelly, S. & Tolvanen, J.P. (2008). Domain-Specific Modeling . Wiley-IEEE
Computer Society Press.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.,

Loingtier, J.M. & Irwin, J. (1997). Aspect-Oriented Programming. In
ECOOP’97: Proceedings of the 11th European Conference on Object-Oriented
Programming .

Krasner, G.E. & Pope, S.T. (1988). A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented
Programming , 11, 26–49.

Kulesza, U., Alves, V., Garcia, A.F., de Lucena, C.J.P. & Borba,

P. (2006a). Improving extensibility of object-oriented frameworks with aspect-
oriented programming. In ICSR’06: Proceedings of the 9th International Con-
ference on Software Reuse.

Kulesza, U., Lucena, C., Alencar, P.S.C. & Garcia, A. (2006b). Cus-
tomizing aspect-oriented variabilities using generative techniques. In SEKE’06:
Proceedings of the 18th International Conference on Software Engineering &
Knowledge Engineering .

193

REFERENCES

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garett, J., Thoma-

son, C., Nordstrom, G., Sprinkle, J. & Volgyesi, P. (2001). The
generic modeling environment. In WISP’01: Proceedings of the Workshop on
Intelligent Signal Processing .

McAffer, J. & Lemieux, J.M. (2005). Eclipse Rich Client Platform: Design-
ing, Coding, and Packaging Java(TM) Applications . Addison-Wesley Profes-
sional.

MetaCase (2008). MetaEdit+ tool. http://www.metacase.com.

Mezini, M. & Ostermann, K. (2004). Variability management with feature-
oriented programming and aspects. In ACM Conference on Foundations of
Software Engineering (FSE-12).

Moser, S. & Nierstrasz, O. (1996). The effect of object-oriented frameworks
on developer productivity. Computer , 29, 45–51.

OMG (2003). UML 2.0 OCL Specification. OMG.

OMG (2004). UML Superstructure Specification, v2.0 .

OMG (2006). MOF 2.0 QVT : Queries / Views / Transformations.
http://www.omg.org.

Ortigosa, A., Campo, M. & Moriyón, R. (2000). Towards agent-oriented
assistance for framework instantiation. In OOPSLA ’00: Proceedings of the
15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications .

Pohjonen, R. & Tolvanen, J.P. (2002). Automated production of family
members: Lessons learned. In PLEES’02: 2nd International Workshop on
Product Line Engineering - The Early Steps: Planning, Modeling, and Manag-
ing .

Pohl, K., Böckle, G. & van der Linden, F.J. (2005). Software Product
Line Engineering: Foundations, Principles and Techniques . Springer-Verlag
New York, Inc.

194

REFERENCES

Pree, W. (1995). Design patterns for object-oriented software development .
ACM Press/Addison-Wesley Publishing Co.

Roberts, D. & Johnson, R.E. (1997). Evolving frameworks: A pattern lan-
guage for developing object-oriented frameworks. In Pattern Languages of Pro-
gram Design 3 , Addison Wesley.

Santos, A.L. (2007). Automatic support for model-driven specialization of
object-oriented frameworks using ALFAMA. OOPSLA’07 Demonstrations
Track.

Santos, A.L. (2008). ALFAMA: Automatic DSLs for using Frameworks by com-
bining Aspect-oriented and Meta-modeling Approaches. AOSD’08 Demonstra-
tions Track.

Santos, A.L. & Koskimies, K. (2006). Aspects as specialization units for
framework-based SPLs. BPAOSD’06: Workshop on Best Practices in Applying
Aspect-Oriented Software Development (AOSD’06).

Santos, A.L. & Koskimies, K. (2008). Modular hot spots: A pattern language
for developing high-level framework reuse interfaces. In EuroPLOP’08: 12th
European Conference on Pattern Languages of Programs .

Santos, A.L., Lopes, A. & Koskimies, K. (2006). Modularizing framework
hot spots using aspects. In Proceedings of the 11th Spanish Conference on Soft-
ware Engineering and Databases .

Santos, A.L., Lopes, A. & Koskimies, K. (2007). Framework specialization
aspects. In AOSD ’07: Proceedings of the 6th International Conference on
Aspect-Oriented Software Development .

Santos, A.L., Koskimies, K. & Lopes, A. (2008). Automatic domain-specific
modeling languages for generating framework-based applications. In SPLC ’08:
Proceedings of the 12th Software Product Lines Conference.

SEI (2008). Software product lines. http://www.sei.cmu.edu/productlines/.

SourceForge (2006). JHotDraw framework. http://www.jhotdraw.org.

195

REFERENCES

Spinczyk, O., Gal, A. & Schröder-Preikschat, W. (2002). AspectC++:
An aspect-oriented extension to C++. In Proceeding of the 40th International
Conference on Technology of Object-Oriented Languages and Systems (TOOLS
Pacific 2002).

Spring Source (2008). Spring Framework. http://springframework.org/.

Steyaert, P., Lucas, C., Mens, K. & D’Hondt, T. (1996). Reuse contracts:
Managing the evolution of reusable assets. In OOPSLA ’96 Conference on
Object-Oriented Programming Systems, Languagges and Applications .

Tarr, P., Ossher, H., Stanley M. Sutton, J. & Harrison, W. (2004).
N degrees of separation: Multi-dimensional separation of concerns. In Aspect-
Oriented Software Development , chap. 3, 37–61, Addison-Wesley.

van Deursen, A., Klint, P. & Visser, J. (2000). Domain-Specific Languages:
an annotated bibliography. SIGPLAN Not., 35, 26–36.

Viljamaa, J. (2003). Reverse engineering framework reuse interfaces. In
ESEC/FSE-11: Proceedings of the 9th European Software Engineering Con-
ference held jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering .

W3C (2008a). Extensible Markup Language (XML). http://www.w3.org/XML/.

W3C (2008b). XSL Transformations (XSLT). http://www.w3.org/TR/xslt.

Weinand, A., Gamma, E. & Marty, R. (1989). Design and implementation
of ET++, a seamless object-oriented application framework. Structured Pro-
gramming , 10, 63–87.

Zelkowitz, M.V. & Wallace, D.R. (1998). Experimental models for validat-
ing computer technology. Computer , 31, 23–31.

196

	1 Introduction
	1.1 Context
	1.2 Problems
	1.2.1 Complexity of framework reuse interfaces
	1.2.2 Defining DSL concepts
	1.2.3 Mapping DSL concepts to framework elements
	1.2.4 Building and maintaining code generators

	1.3 Approach
	1.3.1 Framework specialization aspects
	1.3.2 Domain-oriented reuse interfaces (DORIs)

	1.4 Contributions
	1.5 Thesis Outline

	2 The Problem of Supporting Framework Usage
	2.1 Object-Oriented Frameworks
	2.1.1 Hot spots

	2.2 Case Study: JHotDraw
	2.2.1 Difficulty of understanding hot spots

	2.3 Framework usage support strategies
	2.3.1 Documentation
	2.3.2 Instantiation tools
	2.3.3 DSL

	2.4 DSLs for Instantiating Frameworks
	2.4.1 Identification of concepts and relationships
	2.4.2 Language definition
	2.4.3 Transformation definition
	2.4.3.1 Difficulties of generating framework-based code

	2.5 Towards the Proposed Approach

	3 Framework Specialization Aspects
	3.1 Overview
	3.2 Aspect-Oriented Programming
	3.2.1 Paradigm
	3.2.2 AOP concepts

	3.3 Concept
	3.4 Capturing Framework Hot Spots
	3.4.1 Class inheritance and object parameterization
	3.4.2 Hook method overriding
	3.4.3 Structuring specialization aspects with inheritance
	3.4.3.1 Hierarchies of pluggable objects
	3.4.3.2 Generalizing common behavior

	3.4.4 Object composition and interface implementation
	3.4.5 Implementing relationships with specialization aspects
	3.4.6 Ordering of application aspects

	3.5 Benefits
	3.6 Discussion

	4 Patterns for Framework Specialization Aspects
	4.1 Example Framework
	4.2 Pattern Language Overview
	4.3 Template Pointcut: an AspectJ Idiom
	4.4 Composition Hook Method
	4.5 Self-Pluggable Object
	4.6 Multi-Context Self-Pluggable Object
	4.7 Abstract Self-Pluggable Object
	4.8 Self-Pluggable Type Hierarchy
	4.9 Association Object
	4.10 Example Framework Revisited
	4.11 Discussion

	5 Domain-Oriented Reuse Interfaces
	5.1 Overview
	5.2 Concept
	5.3 Expressing Modeling Constructs
	5.3.1 Annotations

	5.4 DORI Example
	5.4.1 Example Framework
	5.4.1.1 Domain variability model
	5.4.1.2 Conventional reuse interface

	5.4.2 DORI Modules
	5.4.2.1 Concepts and attributes
	5.4.2.2 Composite associations
	5.4.2.3 Abstract concepts and inheritance
	5.4.2.4 Multi-parent child concepts
	5.4.2.5 Open and accessible concepts
	5.4.2.6 Directed associations

	5.5 Discussion

	6 Automated Domain-Specific Modeling Languages
	6.1 Tool Support for Building DSLs using DORIs
	6.2 Building DSMLs using DORIs
	6.2.1 Overview
	6.2.2 Meta-modeling
	6.2.3 Extraction of meta-models from DORIs
	6.2.4 Generation of DORI-based code

	6.3 ALFAMA Tool
	6.4 Discussion

	7 Evaluation
	7.1 Revisiting JHotDraw
	7.1.1 Specialization aspects / DORI
	7.1.2 Comparison with conventional instantiation

	7.2 Case Study: Eclipse Rich Client Platform
	7.2.1 Framework description
	7.2.2 Conventional instantiation
	7.2.3 Specialization aspects / DORI
	7.2.4 Comparison with conventional code generation
	7.2.4.1 Meta-model fragment
	7.2.4.2 Conventional generator in Java
	7.2.4.3 Modularity
	7.2.4.4 Extensibility
	7.2.4.5 Accidental complexity
	7.2.4.6 Integration of manual code
	7.2.4.7 Size

	7.3 Discussion
	7.3.1 Methodological risks
	7.3.2 Limitations

	8 Related Work
	8.1 Combining Frameworks and Aspects
	8.2 Feature-Oriented Programming (FOP)
	8.2.1 Feature models
	8.2.2 FOP languages
	8.2.3 Discussion

	8.3 Domain-Specific Modeling (DSM)

	9 Conclusions and Future Work
	9.1 Summary of Contributions
	9.2 Future Work
	9.2.1 Constraints on DSMLs
	9.2.2 Concrete syntax of DSMLs
	9.2.3 Integration of Frameworks and their DSMLs

	9.3 Final Remarks

	References

